PATHWAYS PROJECT

Pathway Project Overview

- Partners (secondary and post-secondary) from all levels of education agree to share student level data.
- Partners assign faculty members from all levels to meet on a monthly basis.
- The data is then used to generate reports for faculty teams.
- The faculty teams use the data to fuel interventions designed to increase student success.

Data Collection Process

MOU
Development of the Reporting Manual

Data Collection

Data Collected

- Enrollment
- Course (grades included)
- Graduation Data
- Reporting Manuals
http://www.txhighereddata.org/ReportingManu als.cfm

Faculty Reports

- The first faculty reports were designed to match CAL-PASS reports.
- CAL-PASS's reporting methods are "time tested".
- The reports are basically a simple studentcourse to student-course match.

Faculty Reports (Cont.)

Faculty Reports- Alignment Reports

- Alignment reports are designed to illustrate possible gaps in secondary/ post-secondary alignment.

Faculty Reports- Alignment Reports (Cont.)

Faculty Reports

- Cohort Studies
- Predictive modeling
- Special Topic Reports
- Study Skills
- Dual Credit
- Developmental Education
- Outcome reports
- Survey results

Faculty Report Cycle

Faculty Reports

- Giving faculty reports at the ISD level is important to the Pathways process.
- Understanding how different student populations affect alignment
- Understanding how successful ISD projects are effecting current alignment
- Pathways project does not compare ISD's.
- It only evaluates Pathways' interventions.

Faculty Teams

- Faculty Teams are focused around local need for vertical alignment .
- San Antonio and Houston Faculty Teams
- Mathematics
- English
- U.S. History (Social Sciences)
- Biology/ Chemistry (Sciences)

Faculty Teams

- Faculty teams are supported by a regional coordinator, the THECB, and Cal-PASS.
- Faculty teams meet once a month.
- Initially, faculty teams meetings center around team organization and faculty reports.
- Then, faculty teams are charged with development of interventions for all education levels to better align secondary and post-secondary.

The Goal of the Pathway

 Process> Faculty teams design/ change interventions

Interventions are evaluated using data.

Faculty teams start
interventions

THE DATA

THE ALGEBRA 2

First College Math Course at a 2-year

 institution for Students who passed Algebra 2 in High School

First College Math Course at a 2-year

 institution for Students who earned an " A " in Algebra 2

First College Math Course at a 2 -year institution for Students who earned a "B" in Algebra 2

First College Math Course at a 2-year institution for Students who earned a "C" in Algebra 2

First College Math Course at a 2-year institution for Students who took Algebra 2 in High School by Course Grade

Overall Success Rates in First College Math Course at a 2 -year institution for Students who took Algebra 2 in High School by Course Grade

First College Math Course at a 4-year

 institution for Students who passed Algebra 2 in High School

First College Math Course at a 4-year

 institution for Students who earned an " A " in Algebra 2

First College Math Course at a 4-year institution for Students who earned a "B" in Algebra 2

First College Math Course at a 4-year

 institution for Students who earned a "C" in Algebra 2

First College Math Course at a 4-year institution for Students who took Algebra 2 in High School by Course Grade

Overall Success Rates in First College Math Course at a 4-year institution for Students who took Algebra 2 in High School by Course Grade

MATH COHORT STUDY

Math Cohort Study- Methods

- Using 5 of the school district's, we tracked a the 2005-2006 graduation cohort back 4 years in High School and forward 2 years in Higher Education.
- Only students who could be found for 4 years in H.S. were included.

Participants

- A total of 9918 students in the FY2006 H.S Graduation cohort.
- 409(4\%) students were non- trackable.
- Latinos were disproportionally more likely to be removed ($\chi^{2}(4)=114.6, p<.0001$).
- The economically disadvantaged were disproportionally more likely to be removed (χ^{2} (1)=114.7, p<.0001).
- Then, 1200 (12.6%) students removed for not having 4 years of H.S. in the database.

Latinos and African-Americans were disproportionally more likely to be in this group $\left(\chi^{2}(4)=118.6, p<.0001\right)$.

Participants

- The total sample was 8,309 students
- 50.7\% were female.
- 63.1% were Hispanic, 27.5\% white, 7.4\% black, 1.9\% Asian, and 0.1% Native American
- 50.5% were economically disadvantaged.
- 72.8% received a recommended H.S. Diploma, 11.1\% minimum, 7.9\% IEP, and only 8.2\% distinguished

H.S. Course Taking Patterns FY2006 Cohort

Alg. 1	Math Models	Geo.	Alg. 2	Stats	Pre- Calc	Calc	Total	$\%$	
		x	x		x	x	621	7.7%	A
			x		x	x	198	2.5%	B
x		x	x		x		1029	12.8%	C
		x	x		x		748	9.3%	D
x		x	x				2722	33.9%	E
x	x	x	x				1103	13.7%	F
		x	x				478	6.0%	G
x			x				190	2.4%	H
	x	x	x				178	2.2%	I

TAKS TEST

- Analysis -Linear Regression
- $\mathrm{N}=7,254$
- Outcome Variable:
- Exit Level Math TAKS Test
- PredictorVariables:
- Course Taking behavior (9 was the reference group)
- Gender (female was the reference group)
- Economically Disadvantaged (not disadvantaged was the reference group)
- The overall model was significant, ($\mathrm{F}(10,6682$)=560.97, p<.0001).
- Approximately, 45.6% variance in the TAKS Math was explained by the predictor variables.

TAKS Test

Predictors	B	Significance at $\mathrm{p}<.01$
Intercept	2214.9	S
Male	36.12	S
Economically Disadvantaged	-76.1	S
A- Course taking Pattern	248.54	S
B- Course taking Pattern	309.74	S
C- Course taking Pattern	71.48	S
D- Course taking Pattern	121.00	ns
E- Course taking Pattern	-16.71	ns
F- Course taking Pattern	-57.36	ns
G- Course taking Pattern	-0.33	S
H- Course taking Pattern	-122.18	

TAKS Test

- Students who take Course Patterns ending in Pre- Calculus or Calculus perform better on the TAKS than students with ending in Algebra 2 even after the effects of SES and gender are removed.

College Going Behavior

- Analysis -Logistic Regression
- N=7,254
- Outcome Variable:
- Found in College Vs. Not Found in College
- Predictor Variables:
- Course Taking behavior (9 was the reference group)
- Gender (female was the reference group)
- Economically Disadvantaged (not disadvantaged was the reference group)
- The overall model was significant, (χ^{2} (10) $=918.5, \mathrm{p}$ <.0001).

College Going Behavior

Predictors	Odds of Going to College	Significance at p<.01
Male	0.77	S
Economically Disadvantaged	0.57	S
A- Course taking Pattern	6.34	S
B- Course taking Pattern	6.75	S
C- Course taking Pattern	4.92	S
D- Course taking Pattern	4.16	S
E- Course taking Pattern	1.30	ns
F- Course taking Pattern	0.87	ns
G- Course taking Pattern	0.92	ns
H- Course taking Pattern	0.34	S

College Going Behavior

- Students who take Course Patterns ending in Pre- Calculus or Calculus were more likely to go to college than students with ending in Algebra 2 even after the effects of SES and gender are removed.

II Level of Developmental Education

- Analysis -Logistic (Multinomial) Regression
- $\mathrm{N}=3,096$
- Outcome Variable: Starting Math Level at ACCD

Coding	Math Level
1	Lowest Level of DE
2	
3	Highest level of DE
4	Credit Bearing Course
5	

Level of Developmental Education

- Predictor Variables:
- Course Taking behavior (9 was the reference group)
- Gender (female was the reference group)
- Economically Disadvantaged (not disadvantaged was the reference group)
- The overall model was significant, (χ^{2} (10) $=1443.0, p<.0001$).

Level of Developmental Education

Course taking Pattern	Odds of being in a higher level of DE	Significance at $\mathrm{p}<.01$
Male	1.3	S
Economically Disadvantaged	0.27	S
A- Course taking Pattern	31.5	S
B- Course taking Pattern	48.7	S
C- Course taking Pattern	4.3	S
D- Course taking Pattern	4.4	S
E- Course taking Pattern	0.83	ns
F- Course taking Pattern	0.40	S
G- Course taking Pattern	1.1	ns
H- Course taking Pattern	0.20	S

Level of Developmental Education

- Students who take Course Patterns ending in Pre- Calculus or Calculus were more likely to be placed in credit bearing courses than students with ending in Algebra 2 even after the effects of SES and gender are removed.

II Level of Developmental Education- UTSA

- Analysis -Logistic (Multinomial) Regression
- $\mathrm{N}=462$
- Outcome Variable: Starting Math Level at UTSA

Coding	Math Level
1	Lowest Level of DE
2	Highest level of DE
3	Credit Bearing Course

Level of Developmental Education

- Predictor Variables:
- Course Taking behavior (G,H, and I were the reference group)
- Gender (female was the reference group)
- Economically Disadvantaged (not disadvantaged was the reference group)
- The overall model was significant, (χ^{2} (7)=109.1, p<.0001).

Level of Developmental Education

Course taking Pattern	Odds of being in a higher level of DE	Significance at $\mathrm{p}<.01$
Male	1.8	S
Economically Disadvantaged	0.30	S
A- Course taking Pattern	4.2	S
C- Course taking Pattern	0.75	ns
D- Course taking Pattern	0.49	ns
E- Course taking Pattern	0.30	S
F- Course taking Pattern	.15	S

Level of Developmental Education

- Students who take Course Patterns ending in Calculus were more likely to be placed in credit bearing courses than students with ending in Algebra 2 even after the effects of SES and gender are removed.

Conclusions

- For this region, Algebra 2 does not predict success placement into a college credit bearing course.

Future Research Plans

- Linking Pathway's Data to other research projects at ACCD
- Dual Credit studies
- English Study
- STEM Studies
- El Paso Pathways
- Houston Pathways
- Statewide Pathways?

THECB Contacts

- Contact us.

Colby Stoever
colby.stoever@thecb.state.tx.us

