PATHWAYS PROJECT

Pathway Project Overview

- Partners (secondary and post-secondary) from all levels of education agree to share student level data.
- Partners assign faculty members from all levels to meet on a monthly basis.
- The data is then used to generate reports for faculty teams.
- The faculty teams use the data to fuel interventions designed to increase student success.

Data Collection Process

MOU Development of the Reporting Manual Data Collection

Data Collected

Enrollment

- Course (grades included)
- Graduation Data

 Reporting Manuals
 <u>http://www.txhighereddata.org/ReportingManu</u> <u>als.cfm</u>

Faculty Reports

- The first faculty reports were designed to match CAL-PASS reports.
- CAL-PASS's reporting methods are "time tested".
- The reports are basically a simple studentcourse to student-course match.

Faculty Reports (Cont.)

Find a student's highest high school course in a subject area

Link the student's data to higher education data Find the first course the student took in higher education

Faculty Reports- Alignment Reports

 Alignment reports are designed to illustrate possible gaps in secondary/ post-secondary alignment.

Faculty Reports- Alignment Reports (Cont.)

Faculty Reports

Cohort Studies

- Predictive modeling
- Special Topic Reports
 - Study Skills
 - Dual Credit
 - Developmental Education
- Outcome reports
- Survey results

Faculty Report Cycle

Faculty Reports

- Giving faculty reports at the ISD level is important to the Pathways process.
 - Understanding how different student populations affect alignment
 - Understanding how successful ISD projects are effecting current alignment
- Pathways project does not compare ISD's.
- It only evaluates Pathways' interventions.

Faculty Teams

- Faculty Teams are focused around local need for vertical alignment.
- San Antonio and Houston Faculty Teams
 - Mathematics
 - English

- U.S. History (Social Sciences)
- Biology/ Chemistry (Sciences)

Faculty Teams

- Faculty teams are supported by a regional coordinator, the THECB, and Cal-PASS.
- Faculty teams meet once a month.
- Initially, faculty teams meetings center around team organization and faculty reports.
- Then, faculty teams are charged with development of interventions for all education levels to better align secondary and post-secondary.

The Goal of the Pathway Process

Faculty teams design/ change interventions

Interventions are evaluated using data.

Faculty teams start interventions

THE DATA

THE ALGEBRA 2

First College Math Course at a 2-year institution for Students who passed Algebra 2 in High School

First College Math Course at a 2-year institution for Students who earned an "A" in Algebra 2

First College Math Course at a 2-year institution for Students who earned a "B" in Algebra 2

First College Math Course at a 2-year institution for Students who earned a "C" in Algebra 2

First College Math Course at a 2-year institution for Students who took Algebra 2 in High School by Course Grade

Overall Success Rates in First College Math Course at a 2-year institution for Students who took Algebra 2 in High School by Course Grade

First College Math Course at a 4-year institution for Students who passed Algebra 2 in High School

First College Math Course at a 4-year institution for Students who earned an "A" in Algebra 2

First College Math Course at a 4-year institution for Students who earned a "B" in Algebra 2

First College Math Course at a 4-year institution for Students who earned a "C" in Algebra 2

First College Math Course at a 4-year institution for Students who took Algebra 2 in High School by Course Grade

Overall Success Rates in First College Math Course at a 4-year institution for Students who took Algebra 2 in High School by Course Grade

MATH COHORT STUDY

Math Cohort Study- Methods

- Using 5 of the school district's, we tracked a the 2005-2006 graduation cohort back 4 years in High School and forward 2 years in Higher Education.
- Only students who could be found for 4 years in H.S. were included.

Participants

- A total of 9918 students in the FY2006 H.S Graduation cohort.
- 409(4%) students were non-trackable.
 - Latinos were disproportionally more likely to be removed (χ² (4)=114.6, p<.0001).
 - The economically disadvantaged were disproportionally more likely to be removed (χ² (1)=114.7, p<.0001).
- Then, 1200 (12.6%) students removed for not having 4 years of H.S. in the database.
 - Latinos and African-Americans were disproportionally more likely to be in this group (χ²(4)=118.6, p<.0001).

Participants

- The total sample was 8,309 students
- 50.7% were female.
- 63.1% were Hispanic, 27.5% white, 7.4%
 black, 1.9% Asian, and 0.1% Native American
- 50.5% were economically disadvantaged.
- 72.8% received a recommended H.S.
 Diploma, 11.1% minimum, 7.9% IEP, and only 8.2% distinguished

H.S. Course Taking Patterns FY2006 Cohort

Alg. 1	Math Models	Geo.	Alg. 2	Stats	Pre- Calc	Calc	Total	%	
		х	х		x	Х	621	7.7%	А
			х		x	x	198	2.5%	В
x		х	х		x		1029	12.8%	С
		х	х		x		748	9.3%	D
х		х	х				2722	33.9%	E
х	х	х	Х				1103	13.7%	F
		х	х				478	6.0%	G
x			х				190	2.4%	Н
	x	х	х				178	2.2%	I

TAKS TEST

- Analysis -Linear Regression
- N=7,254

- Outcome Variable:
 - Exit Level Math TAKS Test
- Predictor Variables :
 - Course Taking behavior (9 was the reference group)
 - Gender (female was the reference group)
 - Economically Disadvantaged (not disadvantaged was the reference group)
- The overall model was significant, (F (10,6682)=560.97, p<.0001).
- Approximately, 45.6% variance in the TAKS Math was explained by the predictor variables.

TAKS Test

Predictors	В	Significance at p<.01
Intercept	2214.9	
Male	36.12	S
Economically Disadvantaged	-76.1	S
A- Course taking Pattern	248.54	S
B- Course taking Pattern	309.74	S
C- Course taking Pattern	71.48	S
D- Course taking Pattern	121.00	S
E- Course taking Pattern	-16.71	ns
F- Course taking Pattern	-57.36	ns
G- Course taking Pattern	-0.33	ns
H- Course taking Pattern	-122.18	S

TAKS Test

 Students who take Course Patterns ending in Pre- Calculus or Calculus perform better on the TAKS than students with ending in Algebra 2 even after the effects of SES and gender are removed.

College Going Behavior

- Analysis -Logistic Regression
- N=7,254

- Outcome Variable:
 - Found in College Vs. Not Found in College
- Predictor Variables :
 - Course Taking behavior (9 was the reference group)
 - Gender (female was the reference group)
 - Economically Disadvantaged (not disadvantaged was the reference group)
- The overall model was significant, (χ² (10)=918.5, p<.0001).

College Going Behavior

Predictors	Odds of Going to College	Significance at p<.01
Male	0.77	S
Economically Disadvantaged	0.57	S
A- Course taking Pattern	6.34	S
B- Course taking Pattern	6.75	S
C- Course taking Pattern	4.92	S
D- Course taking Pattern	4.16	S
E- Course taking Pattern	1.30	ns
F- Course taking Pattern	0.87	ns
G- Course taking Pattern	0.92	ns
H- Course taking Pattern	0.34	S

College Going Behavior

 Students who take Course Patterns ending in Pre- Calculus or Calculus were more likely to go to college than students with ending in Algebra 2 even after the effects of SES and gender are removed.

Level of Developmental Education

- Analysis Logistic (Multinomial) Regression
- N= 3,096

Outcome Variable: Starting Math Level at ACCD

Coding	Math Level
1	Lowest Level of DE
2	
3	
4	Highest level of DE
5	Credit Bearing Course

Level of Developmental Education

- Predictor Variables :
 - Course Taking behavior (9 was the reference group)
 - Gender (female was the reference group)
 - Economically Disadvantaged (not disadvantaged was the reference group)
- The overall model was significant, (χ² (10)=1443.0, p<.0001).

Level of Developmental Education

Course taking Pattern	Odds of being in a higher level of DE	Significance at p<.01
Male	1.3	S
Economically Disadvantaged	0.27	S
A- Course taking Pattern	31.5	S
B- Course taking Pattern	48.7	S
C- Course taking Pattern	4.3	S
D- Course taking Pattern	4.4	S
E- Course taking Pattern	0.83	ns
F- Course taking Pattern	0.40	S
G- Course taking Pattern	1.1	ns
H- Course taking Pattern	0.20	S

Level of Developmental Education

 Students who take Course Patterns ending in Pre- Calculus or Calculus were more likely to be placed in credit bearing courses than students with ending in Algebra 2 even after the effects of SES and gender are removed.

Level of Developmental Education- UTSA

- Analysis Logistic (Multinomial) Regression
- N= 462

Outcome Variable: Starting Math Level at UTSA

Coding	Math Level
1	Lowest Level of DE
2	Highest level of DE
3	Credit Bearing Course

Level of Developmental Education

- Predictor Variables :
 - Course Taking behavior (G,H, and I were the reference group)
 - Gender (female was the reference group)
 - Economically Disadvantaged (not disadvantaged was the reference group)
- The overall model was significant, (χ²
 (7)=109.1, p<.0001).

Level of Developmental Education

Course taking Pattern	Odds of being in a higher level of DE	Significance at p<.01
Male	1.8	S
Economically Disadvantaged	0.30	S
A- Course taking Pattern	4.2	S
C- Course taking Pattern	0.75	ns
D- Course taking Pattern	0.49	ns
E- Course taking Pattern	0.30	S
F- Course taking Pattern	.15	S

Level of Developmental Education

 Students who take Course Patterns ending in Calculus were more likely to be placed in credit bearing courses than students with ending in Algebra 2 even after the effects of SES and gender are removed.

Conclusions

 For this region, Algebra 2 does not predict success placement into a college credit bearing course.

Future Research Plans

- Linking Pathway's Data to other research projects at ACCD
- Dual Credit studies
- English Study

- STEM Studies
- El Paso Pathways
- Houston Pathways
- Statewide Pathways?

THECB Contacts

Contact us.
 Colby Stoever
 <u>colby.stoever@thecb.state.tx.us</u>