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Regression Discontinuity Design
Outline of Talk

• Introduction
• What is the regression discontinuity design?

• Sharp versus Fuzzy design

• What are the critical assumptions that we 
need to assess?



Introduction
• Regression Discontinuity Design (RDD) first 

implemented in 1960 by Thistlethwaite & 
Campbell in their study of National Merit 
Scholarship Program

• Recently seen a resurgence in economics to study 
such diverse topics as:
– Class size on test scores (Angrist & Levy, 1999).
– Extended benefit receipt on unemployment durations 

(Card et al., 2007).
– Financial aid on College Attendance (Kane, 2003).
– Union victory in NLRB election on wages (DiNardo & 

Lee, 2004).
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– Attainment of minimum drinking age on mortality 
(Carpenter & Dobkin, 2009).

– Effect of remediation on college outcomes (McFarlin, 
2009)

• Why is it so popular?
– Under fairly general conditions (most of which 

are testable) it allows researcher to make causal 
statements regarding impact of treatment on 
outcome.
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Sharp RDD

• Notation & Definitions:
– D– dummy variable equal to one if individual receives 

treatment and 0 if individual doesn’t receive treatment.
– Y – the outcome variable.
– X – the running variable or assignment variable.

• Definition: A sharp regression discontinuity 
design is such that D = 1 if and only if X c 
where c is referred to as the “cut-point”.
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• Lets look at the simple model 
Y = + D + X + 

• Suppose that X was randomly assigned to 
individuals and that D = 1 if and only if      
X c. 

• Then we have a randomized design and we 
can estimate by:
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• What if X is not randomly assigned? 
• Assumption: E(|X) is a continuous 

function of X.
• Let Y1 be the value of Y if treatment is 

received and Y0 be the value of Y if no 
treatment is received. So

• E(Y1|X=c + d)= + + X + 
E(|X=c + d) 

• E(Y0|X=c - d)= + X + E(|X=c - d) 
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• E(Y1|X=c + d) - E(Y0|X=c + d) = + 
E(|X=c + d) - E(|X=c - d) 

• Taking limits as d goes to 0 then by the 
continuity of E(|X) we have:
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• What does the assumption the E(|X) is 
continuous (at c) mean?
– Observations are randomly distributed at the cut 

point.
• With RDD the idea is that instead of using 

all observations to get an estimate, only use 
observations “near” the cut point.
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Outcome
E [Y | X= x]

X

Not treated Mean
E [Y0 | X= c-]

Treated Mean
E [Y1 | X= c+]

Local Treatment Effect
E [Y1 – Y0 | X= c]

c

Outcomes for Treated

Outcomes for Not treated

The RD Estimation Strategy



Sharp RDD

• Just like with randomized experiments it is 
important to check that randomization was 
done correctly, with RDD need to check 
that observations are randomly distributed 
around cut-point.

• Let Z denote a vector of observable pre-
determined variables. Then the E(Z) should 
be the same on either side of the cut point.
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Z

X

Treated Mean
E [Z| X= c+]

Not treated Mean
E [Z | X= c-]

c

Outcomes for Treated

Outcomes for Not treated

Checking randomization around Cut-Point



Checking randomization around Cut-
Point

• There should be no “jump” in the mean of Z at 
cut-point for any Z or any linear combinations of 
the Z’s.

• One potential linear combination of relevance is to 
estimate a regression model of an outcome 
variable on the Z’s and compute the predicted 
value of the outcome variable for the different 
levels of the assignment variable.
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Checking randomization around Cut-Point
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Figure 5
Predicted Outcomes in Baseline Survey by Relative Non-Cognitive Score



No Discontinuity in Distribution of X

• Some may think that another requirement of RDD 
is that individuals must not be able have any 
control over assignment variable (X) near the cut-
point. 
– For example individuals don’t know what c is.

• However, Lee (2008) showed that all you need is 
imperfect ability to control assignment 
variable.
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• This occurs as long as the distribution of 
assignment variable X is continuous at cut-
point.

• So need to check for whether or not there 
are jumps in the probability distribution 
function of X at the cut point (McCrary, 
2008).
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• McCrary (2008) proposes a simple two-step 
procedure for testing whether there is a 
discontinuity in the density of the 
assignment variable. 
– Step 1: The assignment variable is partitioned 

into equally spaced bins and frequencies are 
computed within those bins. 

– Step 2: Treats the frequency counts as the 
dependent variable to check for jumps at cut.
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• In our GMS paper we have a discrete assignment 
variable. So, we do something slightly different 
from McCrary.
– With discrete data, will always get jumps in estimated 

proportions of values of X as move from xt to xt+1. 
– Question is whether the change in estimated  difference 

in proportions, relative to the standard error of 
difference estimate, is large compared to other values of 
xt when xt = c - 1. 
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Fuzzy RDD

• In the sharp design Pr(D=1) goes from 0 to 
1 as the X crosses the cut-point c.

• All you really need is a discontinuous 
jump in Pr(D=1):

• And
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• Well known Wald formulation of treatment 
effect in an IV setting.

• Numerator is an estimate of the intent to 
treat.
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RDD Estimation Strategy 

• Parametric
– Model E(ε|x) as a polynomial function of x

• E(ε|x) = β0+ β1x + β2 x2 + β2x3

• E(y |x)= αE(D|x)+ β0+ β1x + β2x2 + β2x3

• Instrument for treatment using I(X > c). 
• Need to determine what order of polynomial to 

use.
• Also may want to restrict the sample to an 

interval around cut-point to limit influence of 
points far away from cut-point on estimates.
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• Graphical Presentation
• For some bandwidth h and for some number 

of bins K0 and K1 to the left and right of the 
cut-point, respectively, want to construct 
bins (bk, bk+1] of length h and compute 
average value of Y in bin.
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• What bin width should you use?
– One choice is to choose width that minimizes 

cross-validation function:

– Where

and  Xi (bk,bk+1].
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RDD Estimation Strategy 
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RDD Estimation Strategy 

• Non-parametric estimation
– Sharp design
– Y = m(X) +D + 
– Use local polynomial (linear) regression to 

estimate regression line “just below” and “just 
above” the cut point.

• Estimate model first only using data above the cut 
point and then using data only below cut point.
ˆ ( ) estimate above cutm X
( ) estimate below cutm X



RDD Estimation Strategy 

• Then 

• How to estimate m(X)? Use Local polynomial 
regression.

• Local polynomial regression is a series of 
weighted regressions. Use kernel density function 
(K(t)) to determine weights (e.g. Gaussian 
distribution) along with a bandwidth (h).

• How do we choose bandwidth h? 
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• Optimal Bandwidth at a point x0 balances Variance and 
Bias so as to minimize mean squared error.
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• Estimation strategy for optimal bandwidth 
• Separately for those below cut-point (x0)

– Estimate 4th order polynomial regression of 
dependent variable on non-cognitive test score  and 
compute

– Compute rule of thumb bandwidth by 
minimizing mean squared error.

– Estimate local cubic polynomial regression using 
rule of thumb bandwidth.

RDD Estimation Strategy

0x x
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0x x

and lim (x) (x ) σ σ −↑
≡ 



– Compute               and            from local cubic 
polynomial regression and estimate optimal 
bandwidth.

– Estimate local linear regression using optimal 
bandwidth.

• Repeat for those above the cut-point.
• Data-driven or  plug-in bandwidth.
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