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Abstract

Peer effects are potentially important for understanding the optimal organization of schools, jobs, and
neighborhoods, but finding evidence is difficult because people are selected into peer groups based, in part,
on their unobservable characteristics.  I identify the effects of peers whom a child encounters in the
classroom using sources of variation that are credibly idiosyncratic, such as changes in the gender and
racial composition of a grade in a school in adjacent years.  I use specification tests, including one based on
randomizing the order of years, to confirm that the variation I use is not generated by time trends or other
non-idiosyncratic forces.  I find that students are affected by the achievement level of their peers:  a
credibly exogenous change of 1 point in peers’ reading scores raises a student’s own score between 0.15
and 0.4 points, depending on the specification.  Although I find little evidence that peer effects are generally
non-linear, I do find that peer effects are stronger intra-race and that some effects do not operate through
peers’ achievement.  For instance, both males and females perform better in math in classrooms that are
more female despite the fact that females’ math performance is about the same as that of males.
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4  The baseline model is often expressed with an equation like the following:

where yij is some outcome for person i in group j, y6j
-i is the mean value of the outcome for all of the people in group

j except for person i, and Xij is a vector of other factors that affect person i’s outcome.

5  See, for instance, Durlauf [1996].

6  See Argys, Rees, and Brewer [1996].

biased by selection.  For instance, if everyone in a group is high achieving, then many observers assume

that achievement is an effect of belonging to the group instead of a reason for belonging to it.  I return to

this point below.

Second, the model of peer effects that is probably most popular in practice (the “baseline” model)

is one in which peer effects have distributional consequences but no efficiency consequences.  According to

the baseline model, an individual’s outcome on a certain variable is affected linearly by the mean of his

peers’ outcomes on that variable.4  For instance, under the baseline model, a student’s reading score would

be affected linearly by the mean reading score of his classmates.  Regardless of how one allocates peers,

total societal achievement remains the same under the baseline model.  In order to give one student a better

peer, one must take that peer away from another student; the two effects exactly cancel.  If one accepts the

baseline model, then one is limited to peer effects questions that are distributional in nature, such as

disparity in educational opportunities or income inequality.5  Many questions regarding peer effects,

however, require a model that is either non-linear in peers’ mean achievement or in which other moments of

the peer distribution matter.  For instance, the argument for de-tracking is based on the idea that both less

able and more able students benefit from being with one another in the classroom.6  Other models of

learning impose the condition that more able individuals benefit more from a good peer.  The pedagogical

literature is inconsistent:  both the “one bad apple” and the “one shining light” models are popular.  Any

theory in which economic growth depends on peer effects must employ a model other the baseline model. 

Thus, although one might be tempted to dismiss the baseline model as naive or restrictive, if one were to
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7  A student’s “cohort” is determined by the year in which he reaches a given grade--for instance, students
who enter kindergarten in fall 2000 are a “cohort.”

find empirically that the baseline model adequately described peer effects, some interesting theories would

fall by the wayside.

The central problem with estimating peer effects in schools is that vast majority of cross-sectional

variation in students’ peers is generated by selection.  Families self-select into schools based on their

incomes, job locations, residential preferences, and educational preferences.  A family may even self-select

into a school based on the ability of an individual child.  For instance, a family with a highly able child may

choose to live near a school that has a program for gifted children.   Moreover, families may influence the

particular class to which their child is assigned within his school.  If, for example, educationally savvy

parents believe that a certain third grade teacher is best, they may get their children assigned to her class,

creating a class in which parents care about education to an unusual degree.  School staff can generate a

great deal of additional selection.  A school may assign children with similar achievement to the same

classroom, in order to minimize teaching difficulty.  Or, a school may place all of the “problem” students in

a certain teacher’s class because she is good at dealing with them.  In short, one should assume that a

child’s being in a school is associated with unobserved variables that affect his achievement.  One should

also assume that there are unobserved variables associated with a child’s being in a particular classroom,

within his grade within his school.

In this paper, I take for granted that parents choose a school based on its population of peers and

that parents and schools manipulate the assignment of students to classes within their grades.  I introduce

two empirical strategies that, even under these conditions, generate estimates of peer effects that are

credibly free of selection bias.  Both strategies depend on the idea that there is some variation in adjacent

cohorts’ peer composition within a grade within a school that is idiosyncratic and beyond the easy

management of parents and schools.7  That is, even parents who make very active decisions about their
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child’s schooling cannot perfectly predict how their child’s actual cohort within a given public school will

turn out.  There are differences between adjacent cohorts that would be labeled “unexpected” even by

econometricians who have far more information than parents have.  Parents are unlikely to predict these

“unexpected” differences perfectly.  A parent may have a fairly accurate impression of the cohorts around

his child’s age and may pick a school on that basis, but it is expensive for a parent to react to a cohort

composition “surprise” by changing schools.  Moreover, so long as we focus on idiosyncratic variation in

cohort composition, as opposed to classroom composition, we need not worry about schools and parents

manipulating the assignment of students to classrooms.  If a cohort is more female than the previous cohort,

for instance, the school must allocate the “extra” females among its classrooms somehow.  Inevitably, some

students in the cohort will end up with a peer group that is more female than is typical.

In the first strategy, I attempt to identify idiosyncratic variation by comparing adjacent cohorts’

gender and racial groups’ shares.  In the second strategy, I attempt to identify the idiosyncratic component

of each group’s achievement and determine whether the components are correlated.  For both strategies, I

am sensitive to the potential criticism that what appears to be idiosyncratic variation in groups’ shares or

achievement may actually be a time trend within a grade within a school.  (This criticism does not affect

estimates based on gender groups under strategy 1.)   To address this criticism, I not only eliminate linear

time trends:  I also eliminate any school from the sample in which actual years explain more variation (in

cohort composition or in achievement) than false, randomly assigned years.

I implement these empirical strategies using administrative data on third, fourth, fifth, and sixth

graders in the state of Texas during the 1990s.  The data cover the entire population of Texas students in

public schools.  Texas contains a very large number of elementary schools, which is fortunate because

idiosyncratic variation in cohorts within a grade within a school is sufficiently uncommon that a large

number of observations are needed to generate the needed number of “natural events.”

The empirical strategies in this paper are, I would argue, an improvement on many previous
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8  In particular, Boston’s Metco program, in which inner-city minority children are sent to schools in the
suburbs, has been much studied.  The difficulty with estimates based on Metco is that children who enter the
program (and do not attrit from it) are likely to have higher unobserved ability or motivation.

9  One must approach peer effects estimates from housing mobility program with some caution, however. 
Even in programs that randomize offers of housing mobility (such as the “Moving to Opportunity” program),
families that apply may be unusually susceptible to peer effects, and families that attrit are less likely to have
experienced good peer effects.  In the Gautreaux program described by Rosenbaum and de Souza Briggs, being
offered the change to move is not randomized among applicants, but there is some arbitrariness in the
neighborhood to which the family moves.  Selection bias is certainly reduced, relative to normal family moves
observed in data like the Panel Survey of Income Dynamics or the National Longitudinal Survey of Youth, but size
of the reduction is unclear. 

methods of identifying peer effects in schools.  Previous researchers have most often estimated models like

the baseline model and used cross-sectional variation in schoolmates to identify effects.  They have dealt

with selection by controlling for observable variables, comparing siblings in families that move (so that the

siblings experience different schools), examining children in magnet or desegregation programs, or

estimating a selection model.8  In practice, these methods have generally proved unconvincing because there

are unobservable variables that are correlated with peer selection, with moving, with participating in a

magnet or other school program, or with the excluded variables that identify the selection model.   Some of

the most convincing estimates of peer effects come from policy or natural experiments at the college or

neighborhood level.  For instance, Zimmerman [1999] and Sacerdote [2000] estimate the effects of college

roommates who are conditionally randomly assigned at Williams College and Dartmouth College,

respectively.  Rosenbaum [1995] and de Souza Briggs [1997] describe housing mobility programs, which

are a promising source of information on neighborhood effects.9

Before proceeding to the empirical strategies, it is useful to clear about what peer effects include.

Peer effects do include students teaching one another, but direct peer instruction is only the tip of the

iceberg.  A student’s innate ability can affect his peers, not only through knowledge spillovers but through

his influence on classroom standards. A student’s environmentally determined behavior may affect his

peers.  For instance, a student who has not learned self-discipline at home may disrupt the classroom.  Peer
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effects may follow lines like disability, race, gender, or family income:  a learning disabled child may draw

disproportionately on teacher time, racial or gender tension in the classroom may interfere with learning,

richer parents may purchase learning resources that get spread over a classroom.  Peer effects may even

work through the way in which teachers or administrators react to students.  For instance, if teachers react

to black students by creating a classroom atmosphere in which students are expected to perform badly, then

the effects of such systematic teacher behavior would be associated with black peers.  I some cases, I am

able to distinguish empirically among the various channels for peer effects.  In general, however, the peer

effects estimated in this paper (and in most research) embody multiple channels.  When judging the

magnitude of the results, it is important to keep the multiple channels in mind.  Note that the baseline model

does not assert that there is a single channel for peer effects:  it asserts that mean peer achievement is a

sufficient statistic for the multiple channels.

  

II.  The Empirical Strategies

The essence of the two empirical strategies employed in this paper is simple.  One needs a source

of variation in the peers whom a student experiences that does not reflect self-selection or selection by other

forces.  Variation in peers between schools is suspect because families self-select into schools.  The

variation in peers between classrooms within a cohort within a school is suspect:  students may be placed in

classrooms based on schools’ or parents’ assessment of their abilities or of teachers’ abilities.  Variation

within and between private schools is suspect because they have some control over admissions.

Fortunately, adjacent cohorts in a grade in a particular public school are a potential source of non-

suspect variation.  Even within a school that has an entirely stable population of families, biological

variation in the genetic ability, timing, and gender of births would create idiosyncratic variation in the share

of 6 year olds, say, who were female, white, innately able, and so on.   It is this idiosyncratic variation that

the empirical strategies in this paper attempt to exploit.  The strategies use far more information than
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parents have to identify variation between cohorts that is, I would argue, credibly idiosyncratic, unlikely to

have been foreseen by parents, and unlikely to reflect unobserved neighborhood variables.  Moreover,

because the strategies exploit variation in cohort composition, as opposed to classroom composition, they

are impervious to the effect of parents and schools selecting particular classrooms within a cohort within a

grade within a school.

A.  Empirical Strategy 1 - The Basics

There is little reason to suspect that variation between cohorts in gender composition, within a

grade within a public school, is correlated with unobserved determinants of achievement.  A school with

entirely stable demographics has variation in cohorts’ gender composition purely because of variation in the

gender composition of births.  The availability of single-sex private schools is one of the only forces that

systematically affects the gender composition of public schools, but private schools tend to have effects that

are grade-specific, not cohort-specific for a given grade in a given school.  For instance, a single-sex

private school may enroll children only through the fourth grade (which would probably cause a shift in

gender composition between grades four and five in the local public school), but the private school is not

likely have very different effects on adjacent cohorts within grade four within the local public school. 

Indeed, it is not merely plausible that variation in gender composition between cohorts within a grade

within a school is essentially random, there is no public elementary school in the Texas data that shows

evidence of a time pattern in gender composition.

Because cohort-to-cohort changes in the gender composition of a grade within a public school are,

very plausibly, all due to random variation, empirical strategy 1 is most easily illustrated using gender

composition.  After presenting strategy 1 in its simplest form, I extend and modify it to cover between-

cohort variation in racial composition within a grade within a school.  Intuitively, in strategy 1, I see

whether first differences in the achievement of adjacent cohorts within a grade within a school are

systematically associated with first differences in the gender composition of those cohorts.  If there are no
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10  It is also reasonable, under the circumstances, to assume that gmale,gjc is normally distributed.

peer effects, the average achievement of male (or female) students should not be affected by the share of

their peers who are female. 

To formalize this intuition, consider the achievement of male students in grade g in school j in

cohort c.  Let the variable i index the group to which the students belong.  In this case, i0{male, female}. 

Let the variable A stand for achievement.

Define 0male,gj to be the “true” mean achievement of males in grade g in school j in the absence of

peer effects.  Because each male student has some idiosyncratic component of achievement, any given

cohort of males in grade g in school j may have average achievement that deviates from 0male,gj.  Let gmale,gjc

represent this deviation.  In other words, if there are no peer effects, then the average achievement of male

students is, by definition:

(1a)

By definition, gmale,gjc is distributed with mean zero.10  Equation 1a assumes that true mean achievement is

stable across cohorts; I relax this assumption below.  Naturally, there is a parallel equation for females:

(1b)

If there are peer effects, then equation 1a is insufficient because there are at least two ways in

which the average achievement of males could be affected by the presence of female peers.  First, to the

extent that 0male,gj is not equal to 0female,gj, peer achievement in a cohort varies systemically with the share of

the cohort that is female.  If students are influenced by their peers’ achievement, then the cohort’s gender

composition would affect males’ achievement.  Second, the prevalence of females could have some effect

on achievement that does not operate through its effect on peer achievement.  Females might, for instance,

have a general effect on classroom culture.  Equations that allow for peer effects (through peer achievement

or other channels) are:
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(2a)

(2b)

where pfemale,gj is the share of the cohort that is female.  If there are no peer effects, then one should not be

able to reject the null hypothesis that $=0 nor reject the null hypothesis that (=0.  That is, under the null of

no peer effects, any given cohort of males may have average achievement that differs from that of other

male cohorts in their grade in their school, but their achievement should not vary systematically with the

share of students who are female.

When males and females are the groups, there is no definitive test for whether one group affects the

other solely through its effect on peer achievement.   Nevertheless, there are “plausibility” tests that happen

to work well in practice.  Moreover, there are definitive tests available when groups are defined along racial

lines.  See below for a discussion of this issue.

 Naturally, one can write less restrictive versions of equations 2a and 2b that allow for nonlinear

effects of  pfemale,gj.  Nonlinear effects might occur if, say, it is not peers’ mean achievement that matters, but

the achievement of the top quintile of peers.  Alternatively, nonlinear effects might occur if females do not

affect classroom culture until they are 60 percent, say, of a classroom.  Below, I investigate nonlinearities

but, for now, let us stick with linear equations, which are already general enough to subsume typical

specifications of peer effects.

If one first differences equations 2a and 2b, one obtains the basic estimating equations for strategy

1:

(3a)

(3b)

The “true” basic achievement of males and females is assumed to be constant across adjacent cohorts in a

grade in a school, so it drops out.

B.  Extending Strategy 1 to Racial Groups
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behavior towards students, et cetera.

When the groups are males and females, there is no neat test of whether a group’s peer effects all

operate through peer achievement.  Nevertheless, one can still use “plausibility” tests based on common

sense.  For instance, an increase in the share of females that generates an 1 point increase in 02 might raise

or lower the achievement of males by a fraction of a point or by a few points.  If male achievement changes

by many points, it is implausible that the entire effect of females as peers operates through peer

achievement.  Such “plausibility” tests happen to work well in practice.

D.  Bells and Whistles for Strategy 1

There are a few minor empirical issues that deserve mention.  First, the test itself and the testing

arrangements vary slightly from year to year, so all of the estimating equations include year effects that are

grade specific but common to all schools.  If, for instance, the fourth grade test was unusually difficult in

one year, then the difficulty would be common to the entire state and would be picked up by the year effect

in the fourth grade equations.  For visual simplicity, the year effects do not appear in the estimating

equations written above, but in fact they are always included.

Second, the observations are group averages, and the groups vary in size.  Larger groups’ averages

are likely to have smaller variance around the true mean.  Weighted regression is the usual solution for this

type of heteroskedasticity, and I employ weights throughout.

Third, although I have estimated versions of equation 5 in which the dependent variable is the

achievement of Native American or Asian students, the number of students in these groups is so small that

the resulting estimates are imprecise.  Except when it is useful for clarity, I do not show estimates for

Native American or Asian students’ achievement.

Fourth, after examining the linear effects of group composition variables, I look for non-linear

effects.
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14  This amounts to about 84,000 regressions for reading scores and the same number for math scores: 
about 3000 schools times 4 grades times 7 groups (2 gender groups and 5 racial groups).

E.  Empirical Strategy 2 - The Basics

The second empirical strategy also makes use of cohort-to-cohort differences in students, within

grades, within schools; but it exploits information ignored in strategy 1.  In strategy 2, I attempt to isolate

the idiosyncratic component of each group’s achievement (where a group is, as usual, a gender or racial

group in a cohort in a grade in a school) and then test whether the idiosyncratic components of actual peers

are correlated.  For instance, if the females in the 1996-97 cohort of third graders in school 1 have

unusually low achievement, does one find that the males in the 1996-97 cohort of third graders in school 1

have unusually low achievement too?  If the Hispanic students in the 1994-95 cohort of fifth graders in

school 100 have unusually high achievement, does one find that the Anglo, black, and Asian students in the

1994-95 cohort of fifth graders in school 100 have unusually high achievement too?  For this strategy to

make sense, one must obtain an estimate of the idiosyncratic component of each group’s achievement that

is independent of the estimates with which one plans to correlate it.

Formally, the procedure for strategy 2 works as follows.  Obtain an estimate of each group’s

idiosyncratic achievement by estimating the regression:

(10)

for each group i in each grade g in each school j.14  For instance, one regression has, as its dependent

variable, the reading scores of black third graders in school 1.  An estimated residual from one of the above

regressions is--literally--the portion of the achievement of cohort c in group i in grade g in school j that

cannot be explained by a constant (specific to igj), a linear time trend (specific to igj), and the observed

gender and racial composition of the cohort.  Take the estimated residual to be an unbiased estimate of the

idiosyncratic component of achievement of cohort c in group i in grade g in school j; and note that the

residual is estimated independently of the residuals for other groups in cohort c in grade g in school j.  That
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is, the procedure does not, in any way, impose a correlation between residuals of different groups who

share the same classroom.  The regression includes variables indicating the shares of the cohort that are

female, black, and Hispanic because the results of strategy 1 suggest that these variables have systematic

effects.

Rather than simply estimate pair-wise correlations among the residuals, it is best to estimate

regressions that can take account of multiple “other” groups and state-wide year effects (because, as noted

above, the test varies slightly from year to year).  In addition, the regressions need to account for the fact

that the idiosyncratic achievement of a group that forms a small share of a school’s students would not be

expected to have the same peer effect as the idiosyncratic achievement of a group that forms a large share. 

If one multiples each group’s idiosyncratic achievement by its median group share (that is, the median

among the cohorts observed), however, one allows each student’s idiosyncratic achievement to have an

equal effect.  This is a reasonable basic specification and gives us regressions of the form:

(11)

for examining correlations among racial groups and gives us regressions of the form:

(12)

for examining correlations among gender groups.  Icohort is the vector of indicator variables for cohorts that

generates the state-wide year effects.

If there are no peer effects, one should not be able to reject the null hypothesis that 21=0, 22=0,

23=0, 24=0, and 26=0.  The interpretation of the coefficient 21 is, for instance, the effect on a black

student’s achievement of having his Native American cohort-mates score one point higher on average

(under the assumption that each student has an effect proportional to his share of the class).  The

interpretations of 22, 23, 24, and 26 are similar.  Moreover, if the idiosyncratic achievement of a student

affects his peers in the same way regardless of his race or gender, then one should not be able to reject the
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null hypothesis that 21=22=23=24=26.

It is arbitrary that equation 11 is written with black students’ idiosyncratic achievement as the

dependent variable and that equation 12 is written with male students’ idiosyncratic achievement as the

dependent variable.  Mainly for convenience, I show not only the results of equations 11 and 12, but also

the results of parallel equations, with other racial groups’ and females’ idiosyncratic achievement as the

dependent variables.  Naturally, the results of the parallel equations do not contain much new information--

they are mainly a way of rewriting the same information so that comparisons are easy.

F.  Additional Notes on Strategy 2

There are two concerns about strategy 2.  The first one is related to time trends.  Equation 10,

which is used to estimate idiosyncratic achievement, assumes that any time trend in each group’s

achievement can be captured by a linear term.  One may be concerned, however, about time trends that are

not captured by the linear term.  Thus, after applying strategy 2 in its basic form, I use the “drop if more

than random” method and apply strategy 2 on the reduced sample of schools that do not appear to have

nonlinear time trends in achievement.

The second concern about strategy 2 is that estimated idiosyncratic achievement includes not only

the effects of idiosyncratic student achievement (which one wants to exploit), but also the effects of

common shocks that affect a particular cohort in a grade in a school.  For instance, if a unusually good

teacher is hired and teaches third grade for one year, her effect will be a common shock on the cohort of

students who experience her teaching.  Since all of the racial and gender groups in the cohort would

presumably experience her teaching, it would appear that their idiosyncratic student achievement is

correlated because of peer effects, when in fact they have simply experienced a common teaching shock. 

Note that an unusually good teacher who teaches third grade for the whole period would not cause such a

problem:  her effect would be absorbed in the fixed effect for third graders in the school.  A third grade

teacher who improved her teaching over the period would have her effect absorbed by the linear time trend
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15  One cannot use third grade to sixth grade comparisons because many students change schools between
fifth and sixth grades, thereby disrupting cohort composition.

or would cause her school to be dropped under the “drop if more than random” method.  Similarly, the

substitution of a better for a worse third grade teacher part of the way through the period would almost

certainly cause the school to be dropped under the “drop if more than random” method.  Thus, one should

be primarily concerned about teacher shocks of one or two years.  One might also worry about transitory

shocks like a building project that disrupts a classroom, unusual testing conditions like excessively hot

weather, and so on.

There are two ways in which I test whether the peer effects apparently estimated in equations 11

and 12 are really the effects of common shocks.  First, I attempt to determine the importance of peripatetic

teachers by limiting the sample to schools with low teacher turnover over the period (fewer than 10 percent

of the teacher slots in the school turn over in each six-year period).  Second, I investigate whether the

idiosyncratic third grade achievement of a group is correlated with the idiosyncratic fifth grade

achievement of their peers.  Such between-grade regressions are ideal for eliminating common shocks with

transitory effects (such as test conditions), but not common shocks with lasting effects (such as a

peripatetic teacher whose instruction has lasting effects).  The standard for the between-grade test should

be whether one can reject the null of no correlation, not whether the between-grade correlation is as strong

as the same-grade correlation.  After all, there are numerous reasons, apart from common shocks with a

transitory effect, why between-grade correlation should be lower than same-grade correlation:  the

composition of a cohort changes as children migrate into and out of the school, a group that performs

idiosyncratically well on third grade material need not perform equally well on fifth grade material, and so

on.15

Furthermore, the variables for strategy 2 are estimated residuals, which are erroneous measures of

true idiosyncratic achievement.  The measurement error will generate attenuation bias, which will become
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particularly obvious in the between-grade regressions that eliminate common shocks with transitory effects. 

Put another way, the estimated residuals will contain classical measurement error and measurement errors

that represent common shocks with transitory effects.  The classical error will be uncorrelated across

groups and will cause the estimates to be downward biased.  The errors that represent common shocks will

cause the estimates to be upward biased.  The same-grade estimates may be either upward or downward

biased because attenuation and common shocks work in opposite directions.  The between-grade estimates

will definitely be downward biased because they suffer only from attenuation bias.  Measurement error will

particularly affect the residuals estimated for Native Americans because so few students are in the group. 

One should not expect to learn much from the coefficients on the Native American residuals.  The same

problem affects the residuals estimated for Asians, to a lesser extent.  Therefore, in interpreting the strategy

2 results, I focus on the idiosyncratic achievement of black, Hispanic, and Anglo students.

III.  Data

The empirical strategies described require data on students’ achievement on a standardized metric,

by gender and racial group, in several adjacent cohorts.  In addition, the empirical strategies call for cohorts

that are relatively small (so that idiosyncratic variation in individual students’ gender, race, and

achievement does not get averaged out) and for many schools (since the share of observations with “natural

events” is small).  Cohorts also need to have integrity as peer groups.  Cohorts have integrity in the

elementary grades, but do not always have integrity in the secondary grades, where some classes are

organized by material instead of by grade (for instance, Algebra II instead of grade 9 math).

The data requirements are fulfilled by a dataset drawn from the Texas Schools Microdata Sample,

which is managed by the Texas Schools Project.  The Microdata Sample uses administrative data on the

population of students in Texas public schools, which are gathered by the Texas Education Agency. 

Beginning with the 1990-91 school year, Texas began to administer a state-wide achievement test called the
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Texas Assessment of Academic Skills (TAAS) to elementary school students.  TAAS is one of a generation

of state-wide tests written by Harcourt-Brace Educational Measurement, the largest standardized test

maker in the United States and the purveyer of such well-known tests as the Stanford 9 and Metropolitan

Achievement Test.  Although, like other state-wide tests, TAAS contains elements that are specific to the

curriculum that Texas advocates, TAAS is a fairly typical standardized test with questions that are

extremely similar (if not identical) to questions that Harcourt-Brace uses in other standardized tests.

In this paper, I use test data on grades three, four, five, and six.  Grade three has been tested from

1990-91 to the present; grade four from 1992-93 to the present; and grades five and six from 1993-94 to

the present.  Table 1 display data on Texas schools and demographics for third graders, from 1990-91 to

1998-99.   In a typical year during this period, there were about 3,300 schools in Texas that enrolled third

graders and the size of the median cohort was about 80 students.  Third graders were typically 48.7 percent

female, 0.3 percent Native American, 2.3 percent Asian, 15.0 percent black, 33.1 percent Hispanic, and

49.3 percent Anglo.  There were no apparent time trends in the shares of third graders who were female or

Native American.  There were slight upward trends in the shares of third graders who were Asian (2.2 to

2.5 percent over the period), black (14.8 to 15.7 percent over the period), and Hispanic (30.7 to 34.9

percent).  There was a mild downward trend in the share of third graders who were Anglo (52.2 to 46.4

percent).  Appendix Table 1 shows comparable statistics for grades four, five, and six, which are very

similar (naturally, because most of the students are the same).

Table 2 shows statistics on the reading scores of third graders from 1990-91 to 1998-99.  Over the

period, the TAAS reading test had a mean of about 29.5 points and a standard deviation of about 2.3

points.   The average female scored 1.1 points--or about half a standard deviation--higher than the average

male.  Compared to the average Anglo student, the average Native American student scored 1.5 points

lower, the average Asian student scored 0.7 points higher, the average black student scored 3.6 points

lower, and the average Hispanic student scored 2.9 points lower.  Note that the black-Anglo and Hispanic-
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Anglo score gaps are substantial:  1.6 and 1.3 standard deviations, respectively.  There is an upward trend

in the scores of all groups over the period:  the average score rose from 28.5 to 31.3 points.  Some score

improvement typically occurs over the first few years of test administration, simply owing to comfort with

the test.  The improvement in Texas scores accelerated over time, however, and the last few years’

improvement are most likely to due to true learning of the material tested by the examinations--particularly

as Texas distributed its curriculum (towards which the tests are oriented) only in the last few years.

Table 3 contains similar information for the TAAS math tests.  The math test had a mean of 35.6

and a standard deviation of 2.9 over the period.  There was a slight upward trend in scores:  an average

gain of 0.1 points per year.  The average female scored 0.1 points higher than the average male--a

difference of only 0.03 standard deviations.  Compared to the average Anglo student, the average Native

American student scored 1.9 points lower, the average Asian student scored 1.3 points higher, the average

black student scored 4.7 points lower, and the average Hispanic student scored 3.2 points lower.  The

black-Anglo and Hispanic-Anglo score gaps are substantial:  1.6 and 1.1 standard deviations, respectively.

Appendix Tables 2 and 3 display reading and math test statistics for fourth, fifth, and sixth

graders.  The results are very similar to those for the third grade tests, except that the fourth, fifth, and

sixth grade tests have slightly larger standard deviations.  The standard deviations are 3.4 for reading and

4.2 for math in the fourth grade; 2.7 for reading and 3.8 for math in the fifth grade, and 3.1 for reading and

4.6 for math in the sixth grade.

Finally, Appendix Table 4 shows Asian-Anglo, black-Anglo, and Hispanic-Anglo score gaps for

schools with different basic racial composition.  For instance, the table displays the Hispanic-Anglo score

gap for schools that less than 10 percent, 10 to 25 percent, 25 to 60 percent, and more than 60 percent

Hispanic.  Interestingly enough, the score gaps tend to be similar across schools with different racial

composition.  This fact is convenient to know later, when we consider non-linear peer effects.
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16  All of these occurrences take place in schools with normal gender composition overall.

IV.  Results of Strategy 1

Table 4 shows an example of the variation used by strategy 1.  It displays statistics on the first

differences in gender and racial shares for the 1994-95 school year versus the 1993-94 school year.  Third

grade cohorts are used.  The racial shares are detrended (with a linear time trend) before the first

differences are calculated.  Thus, the table shows the instruments for equation 5.

Consider the first differences in percent female, for instance.  A standard deviation in the variable

is 11 percentage points.  At the 1st percentile are cohorts with percent female that is 30 percentage points

lower than the previous cohorts; at the 99th percentile are cohorts with percent female that is 28 percentage

points higher.  Clearly, the distribution of the first-differences is symmetric (as it should be).  Since gender

composition is highly centered around 49 percent female, we can see that most of the variation in gender

composition that is exploited by strategy 1 is in cohorts that range from 20 to 80 percent female.  There are

a few all male and a few all female cohorts in the data, but such occurrences are naturally very rare.16

The first-differences in percent black, Hispanic, and Anglo have standard deviations of 6, 8, and 9

percentile points, respectively.  At the 1st percentile are cohorts with black, Hispanic, and Anglo shares

that are--respectively--17, 23, and 25 percentage points lower than the previous cohorts’.  Since the

distributions of the first differences are highly symmetric (as they should be if the detrending is working as

intended), the 99th percentile is almost a mirror image of the 1st percentile.

Overall, Table 4 shows a large amount of cohort-to-cohort variation, within grade, within school. 

The cohort-to-cohort variation dwarfs the time trends shown in Table 1, and it is the foundation of strategy

1.

A.  The Effect of Having A More Female Peer Group

Table 5 displays the effect of having a peer group that is more female (less male).  The results are
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based on weighted least squares estimates of equations 3a and 3b.  The structure of the table is similar to

that of the tables that follow, so it is useful to describe it here.  Each cell shows the estimated coefficient on

the change in the share of the cohort that is female; and, thus, each cell represents a separate regression. 

The share of the cohort that is male is the “omitted share.”  Neither Table 5 nor any of the tables that

follow show the estimated year effects.  The year effects are significant but simply pick up the year-to-year

differences in the test across the state, as displayed in Tables 2 and 3.  Each cell in Table 5 shows the

coefficient first, with one asterisk if it is statistically significant at the 0.05 level and two asterisks if it is

statistically significant at the 0.01 level.  The standard error on the coefficient is in parentheses.  In the

square brackets is a translation of the coefficient into the effect of a change in peers’ mean test scores,

where the change in the mean is due solely to the change in the share of the cohort that is female.  To make

this translation, one uses the estimated difference between the genders’ true underlying test scores (that is,

test scores before peer effects).  The translation is useful for testing the hypothesis that peer effects operate

purely through peers’ achievement.

Table 5 shows that both females and males tend to perform better in reading when they are in more

female classes.  For instance, the coefficient on the change in the female share is 0.374 for female third

graders’ reading scores, implying that females’ scores rise by 0.0374 points for every 10 percentage point

change in the share of their class that is female.  Males’ scores rise by 0.0471 points for 10 percentage

change in the share of their class that is female.  To put this in perspective, an all-female class would score

about one-fifth of a standard deviation higher in reading, all else equal.  The effects for fourth, fifth, and

sixth grade reading scores are similar.  The translation of the results into effects of mean peer achievement

provide a different perspective:  being surrounded by peers who--for exogenous reasons--score 1 point

higher on average raises a student’s own score by 0.3 to 0.5 points, depending on the grade.  The

translation suggests that peer effects are substantial.

Table 5 also shows that both female and male students perform better in math when they are in
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more female classes.  Female third graders’ scores rise by 0.0381 points for every 10 percentage point

change in the share of their class that is female.  The effect is larger for higher grades:  female sixth

graders’ scores rise by 0.0640 points for every 10 percentage point change in the share of their class that is

female.  A parallel effect exists for males’ scores.  Male third graders score 0.0396 points higher and male

sixth graders score 0.0808 points higher for every 10 percentage point change in the share of their class

that is female.  Because the average female scores only a little higher than the average male, however,

translating the scores into the effect of peers’ mean achievement generates implausibly large effects.  If one

were to take the translated effects in square brackets literally, one would conclude that being surrounded by

peers whose math scores were exogenously 1 point higher on average would raise a student’s own score by

1.7 to 6.8 points, depending on the grade.  These effects are so large that they suggest that peer effects do

not operate purely through peers’ mean achievement in math.

There are a few alternative channels that might explain the effect of females on math scores.  First,

since learning math requires reading and reading scores are higher in more female classes, females may

affect subjects like math through their (quite plausible) peer effect on reading.  Second, more female

classes may simply have fewer disruptive students or a more learning-oriented culture.  Third, classroom

observers argue that pressure to be feminine makes girls unenthusiastic about math.  Perhaps in female-

dominated classrooms,  females do not experience much pressure and therefore remain enthusiastic about

math--allowing the teacher to teach it better to all students.  In any case, it is clear that the baseline model

of peer effects is inadequate:  peer effects do not operate solely through peers’ mean achievement in the

same subject.

I investigate possible non-linearities in the effect of having a more female peer group in Table 6. 

The table displays estimates from a simple variant of equations 3a and 3b:  the change in the female share

is interacted with an indicator for whether the initial cohort was 0 to 33 percent female, 33 to 66 percent

female, or 66 to 100 percent female.  One can just discern a pattern in the point estimates.  The effect of a
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their class that is black, black students’ math scores fall by 0.1863 points, Hispanic students’ reading

scores fall by 0.0861 points, and Anglo students’ reading scores fall by 0.0427 points.  It is interesting that

the effects of black peers appear to have the greatest effect on other black students; this difference in the

size of the effect is largely confirmed by the results for grades four, five, and six.  Recalling that black

students have the lowest scores on both the reading and math tests, one can see that these results can be

interpreted as effects of peer achievement.  If one translates the results, one finds that being surrounded by

peers who exogenously score 1 point lower on average has the following effects: it lowers a black student’s

own score by 0.676 points in reading and 0.402 points in math; it lowers an Hispanic student’s own score

by 0.266 points in reading and 0.185 points in math; and it lowers an Anglo students’ own score by 0.168

points in reading and 0.092 points in math.  The translation suggests that the effect of mean peer

achievement varies from small (0.092) to substantial (0.676), and that the most substantial effects of mean

peer achievement are intra-racial group.

There are other noteworthy effects in Table 7a and its parallel tables for fourth, fifth, and sixth

grades (Appendix Tables 5a, 6a, and 7a).  In the fourth, fifth, and sixth grades, Hispanic students perform

worse in reading and math and Anglo students perform worse in math when they are in classes that have a

larger share of Hispanic students.  For instance, for every 10 percentage point change in the share of their

class that is Hispanic, Hispanic fifth graders’ reading scores fall by 0.1420 points and their math scores

fall by 0.2047 points.  For the same change in the Hispanic share, Anglo fifth graders’ math scores fall by

0.0612 points.  If one translates the results, one finds that being surrounded by peers who exogenously

score 1 point lower on average has the following effects: it lowers an Hispanic student’s own score by

0.439 points in reading and 0.587 points in math; it lowers an Anglo student’s own score by 0.176 points in

math.  Again, the results suggest that the effect of mean peer achievement varies, and are greatest for peers

within the racial group generating the change in achievement.

There are a few coefficients on the change in the share of students who are Native American that
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19  Even when the coefficient on the change in the share of students who are Native American is
statistically significant, it has a large standard error.  It is not useful to interpret the point estimate of such
coefficients, particularly in light of the small number of Native American students who generate the results.

are statistically significantly different from zero.  Each of these significant coefficients is negative, a finding

that is in keeping with the mean peer achievement interpretation of the coefficient.19  In addition, there are a

few coefficients on the change in the share of students who are Asian that are statistically significantly

different from zero.  Each of these significant coefficients is positive and in a math regression.  For

instance, for every 10 percentage point change in the share of their class that is Asian, Anglo fifth graders’

math scores rise by 0.0718 points and Anglo sixth graders’ math scores rise by 0.2022 points. The effects

of the Asian share are in keeping with mean peer achievement interpretations because the Asian-Anglo

score gap is positive and relatively large in math (0.62 of a standard deviation in the fourth, fifth, and sixth

grades). 

The last lines of Table 7a and Appendix Tables 5a, 6a, and 7a show the p-value for the F-test of

the hypothesis that changes in mean peer achievement have an equal effect regardless of which race

generated them.  In other words, having translated each coefficient into an effect of peers’ mean

achievement, one can test whether it is only peers’ mean achievement that matters or also the composition

of the peer group.  The p-values indicate that the null hypothesis of equal effect tends to be rejected when

black students’ achievement is the dependent variable.  The rejection is mainly caused by black students’

achievement being disproportionately affected by the share of their cohort that is black.  When Anglo

students’ achievement is the dependent variable, the null hypothesis tends not to be rejected, suggesting that

changes in mean peer achievement tend to affect Anglo students in the same way regardless of which racial

minority group’s share is responsible for the change.  When Hispanic students’ achievement is the

dependent variable, the test results vary by grade and test.  The null hypothesis is likely not to be rejected

for math, but it is rejected about half the time for reading.
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20  The standard errors are, however, uniformly larger in Table 7b than in Table 7a.

Table 7b shows alternative estimates of the effect of having a peer group with various racial

compositions.  The table displays least squares estimates of equation 5 (and its parallel for other races) that

are computed using the reduced sample generated by the “drop if more than random” method.  Almost two-

thirds of the observations are dropped in this very stringent test for time trends. Despite the reduction in the

sample, the results of Table 7b are generally similar to those of Table 7a, which assume that the time

trends can be captured by linear terms.20  In addition, Appendix Tables 5b, 6b, and 7b--which contain

“drop if more than random” results for fourth, fifth, and sixth graders--display estimates that are similar to

the parallel estimates that assume that the time trends can be captured by linear terms.  Broadly, Table 7b

and Appendix Tables 5b, 6b, and 7b suggest that black, Hispanic, and Anglo students perform worse in

both reading and math when they are in a cohort that has a larger share of black students.  The negative

effect is stronger for black and Hispanic students than for Anglo students.  There is also some evidence in

the tables that Hispanic and Anglo students have lower scores (especially in math) when they are in a

cohort that is more Hispanic.  The negative effect of the Hispanic share is greatest for Hispanic students. 

A few coefficients suggest that the Asian share has a positive effect on Anglo students’ achievement in

math.  The p-values at the bottom of each table have a pattern that is similar to the pattern described above

for Table 7a and Appendix Tables 5a, 6a, and 7a.

The fact that intra-race peer effects appear to be stronger than between-race peer effects suggests

one inadequacy of the baseline model of mean peer achievement, but what about general non-linearities?  

In Table 8, I investigate non-linearities in the effect of racial composition.  The table displays estimates

from a variant of equation 5 in which the change in the black share is interacted with an indicator for

whether the initial cohort is 0 to 33 percent black, 33 to 66 percent black, or 66 to 100 percent black. 

Also, the change in the Hispanic share is interacted with an indicator for whether the initial cohort is 0 to
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33 percent Hispanic, 33 to 66 percent Hispanic, or 66 to 100 percent Hispanic.

Although the standard errors on some coefficients are large, there are three discernable patterns in

the point estimates.  The negative effect of the black share on black students is strongest in cohorts that

between 33 and 66 percent black.  The negative effect of the black share on Anglo students is largest in

cohorts that are at least 33 percent black (it is unclear whether the effect is greater in the 33 to 66 percent

or the 66 to 100 percent range).  The negative effect of the Hispanic share on Hispanic students only

appears in cohorts that are 0 to 33 percent Hispanic.  In fact, the Hispanic share has a statistically

significant, positive effect on the achievement of Hispanic students in cohorts that are 66 to 100 percent

Hispanic.  There are few possible interpretations of this sign reversal.  First, greater availability of

Hispanic peers may be helpful in cohorts that are already mainly Hispanic because each student who has

difficulty speaking English is more likely to find a bilingual student to translate for him, help him learn

English, and so on.  Second, a more Hispanic cohort may be helpful for Hispanic students because it makes

teachers sensitive to providing instruction that can be absorbed by language-minority students or because it

forces a school to provide language services (such as English as a Second Language).  Third, some schools,

when faced with an unusually Hispanic cohort, may segregate their Spanish speaking students in a

particular class because there are enough such students to fill a class.  It is possible that such segregation

generates higher achievement among Hispanic students (even if it is undesirable for other reasons).

V.  Results of Strategy 2

Recall that the variables used in strategy 2 are groups’ idiosyncratic achievement, where the

idiosyncratic component of achievement is, in practice, the residual from a school-grade-gender specific

regression of test scores on a time trend, cohort gender composition, and cohort racial composition.  The

coefficients are effects of peers’ test scores, so “translations” in square brackets are not needed.  Also,

because the variables are the product of the residuals themselves and the relevant group’s median share,
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each coefficient can be interpreted as the effect of being surrounded by peers who score 1 point higher. 

Finally, recall that the variables for strategy 2 are estimates that contain measurement error, especially for

Native American and Asian students.  It is unclear whether measurement error causes the same-grade

estimates to be biased (because attenuation bias and common shocks with transitory effects are offsetting),

but the between-grade estimates are definitely downward biased.

Strategy 2 is concerned with the correlation among groups’ residuals, so it is arbitrary which

group’s residuals are assigned to be the dependent variable in the regressions.  Regressions are used for

convenience since year effects must be estimated, but they are not meant to imply that females’ residuals,

say, cause males’ residuals, anymore than males’ residuals cause females’ residuals.  Partly to keep this

point clear and partly for convenience of comparison, the tables “cycle” the dependent variable among the

groups. 

Table 9 exemplifies the structure of the tables that contain the results of strategy 2.  In Table 9,

each cell represents a different regression, and the regression is described by the two left-hand columns and

the two right-hand column headings.  In each regression, year effects were also estimated, but they are not

shown.

A.  The Effect of Peer Achievement, Take 1:  Groups are Defined by Gender

Table 9 shows the effect of peer achievement, using residuals estimated for male and female

groups.  Clearly, these groups are mutually exclusive, so the residuals on the left- and right-hand side of

each regression were estimated independently.  In the top panel of Table 9, males’ residuals are regressed

on the residuals of females who were actually their peers.  In the bottom panel of Table 9, females’

residuals are regressed on the residuals of the males who were actually their peers.  For all of the same-

grade regressions, one gender’s idiosyncratic achievement has a positive, highly statistically significant

effect on the idiosyncratic achievement of their peers from the other gender group.  The point estimates are

in a rather narrow range, especially for reading.  In grades three through six, being surrounded by peers
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who score one point higher in reading raises a student’s own score by 0.3 to 0.4 points.  Put another way,

the two gender groups’ idiosyncratic achievements are correlated with a correlation coefficient of

approximately 0.3 to 0.4, excluding the correlation generated by year-specific factors like the test itself.  In

math, being surrounded by peers who score one point higher raises a third grader’s own score by about 0.6

points, raises a fourth grader’s own score by about 0.5 points, and raises a fifth or sixth grader’s own score

by about 0.4 points.

To test whether the residuals are correlated due to common shocks, such as unusual test conditions,

I regress fifth graders’ residuals on the third grade residuals of their peers.  These estimates are displayed

in the bottom row of each panel of Table 9.  The third grade residuals do have a statistically significant

effect on the fifth grade residuals, which suggests that peer effects compose at least part of the same-grade

correlation.  The point estimates in the between-grade regressions are in the range of 0.06 to 0.08, but they

are almost certainly underestimates because of attenuation bias and because migration of students limits

between-grade correlation.

Table 10 contains two specification tests.  The top panel tests whether the correlation between

residuals is generated by teachers who teach only one or two years.  (Recall that teachers who teach for

longer periods will show up as fixed effects or time trends of some sort.)  The sample used in the top panel

includes only schools that have low teacher turnover (fewer than 10 percent of the slots turn over in each

six-year period).   The coefficients in the top panel of Table 10 are quite similar to those in Table 9, which

suggests that teacher shocks do not account for much of the correlation.  In fact, the correlations in the top

panel of Table 10 are slightly higher than those in Table 9.  It may be that the schools in the low turnover

sample are generally more stable so that the residuals are more precisely estimated and the coefficients

suffer less from attenuation bias.

The bottom panel of Table 10 attempts to test whether the apparent peer effects in Table 9 are

caused by insufficient controls for time trends.  In particular, one might worry that the time trends for
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21  The table does not use Native American or Asian residuals as the dependent variable because the
sample would be so small.  The sample varies with the choice of the dependent variable because some schools do
not contain any black students, other schools do not contain any Hispanic students, and so on. 

22  The coefficients on Asian residuals vary widely, which suggests that measurement error (both classical
and due to common shocks) generates a large share of the total variation.

Nevertheless, the idiosyncratic achievement of Asian students is positively, statistically significantly
correlated with the idiosyncratic achievement of Anglo students in all grades.  In the third and fourth grades (but
not in the fifth or sixth grades), the idiosyncratic achievement of Asian students is positively, statistically
significantly correlated with the achievement of black and Hispanic students.

The third and fourth grades have longer panels and, thus, more precisely estimated residuals.  More
precise residuals probably account for the statistical significance of Asian residuals in the third and fourth, but not
the fifth and sixth, grades.

The fact that Asian residuals are correlated with Anglo residuals even in the fifth and sixth grades, where
the panels are short, suggests that the Asian residuals are more precisely estimated in schools that contain Anglos,

achievement are non-linear for some groups.  The estimates in the bottom panel are computed using the

reduced sample generated by the “drop if more than random” method.

The coefficients in the bottom panel of Table 10 are quite similar to those in Table 9, which

suggests that non-linear time trends do not account for much of the correlation.  In fact, the correlations in

the bottom panel of Table 10 are slightly higher than those in Table 9, suggesting that schools with no

apparent time trend may be more stable generally so that coefficients suffer less from attenuation bias.

B.  The Effect of Peer Achievement, Take 2:  Groups are Defined by Race

Table 11 shows the effect of peer achievement in reading, using residuals estimated for the five

racial groups.  Because the groups are mutually exclusive, the residuals for groups who are actually peers

were estimated independently.  Each row is a regression, and the table cycles the dependent variable

through the races.21

For all of the same-grade regressions shown in Table 11, the idiosyncratic reading achievement of

black, Hispanic, and Anglo students is positively, statistically significantly correlated.  The pattern of

coefficients also suggests that the idiosyncratic reading achievement of Asian students is positively,

statistically significantly correlated with the reading achievement of black, Hispanic, and Anglo students,

but that measurement error in the Asian residuals causes their coefficients to vary widely.22
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of peer achievement are not highly non-linear. 

Table 13 contains the specification tests based on schools with low teacher turnover and schools

with no apparent time trends.  The results in Table 13 are for math, so the results should be compared to

those in Table 12.  The top panel of Table 13 employs the low turnover sample to test whether the

correlation between residuals is generated by teachers who teach only one or two years.  The coefficients in

the panel are very similar to those in Table 12, which suggests that teacher shocks do not account for much

of the correlation.

The bottom panel of Table 13 uses the reduced sample generated by the “drop if more than

random” method to test whether insufficient controls for time trends generate the apparent peer effects. 

The estimates in the panel are similar to those in Table 12, which suggests that non-linear time trends do

not account for much of the correlation that has been attributed to peer effects.

Finally, Table 14 tests for non-linear effects of other groups’ achievement using a variant of

equation 12 in which there is a quadratic in females’ residual achievement.  The coefficients on the linear

term are nearly identical to those in Table 9 (which restricted the effect to be linear) and the coefficients on

the quadratic terms are all small (in the range of 0.001 to 0.008) and statistically insignificantly different

from zero.  These results do not provide any evidence of non-linearities; nor did results for racial groups or

cubic specifications. 

Let us assess the results of strategy 2 overall.  The estimated peer effects based on gender groups

are between 0.3 and 0.4, but only some of the statistically significant estimates based on racial groups are

in the same range--about two-thirds are higher.   The higher estimates may be overestimates caused by

common shocks with transitory effects.  The between-grade estimates in which such common shocks are

eliminated range between 0.6 and 0.9, but they are almost certainly underestimates of true peer effects, not

only because of attenuation bias but also because the migration of a few low-achieving or high-achieving

students can change a peer group’s idiosyncratic component of achievement.  In short, strategy 2 generates
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unambiguous evidence about the existence of peer effects, but the range of estimates is somewhat wide: 

0.10 to 0.55 is a plausible summary of the range, given the various results and known biases.

VI.  Conclusions

In this paper, I empirically investigate whether there are peer effects in the classroom.  Schools are

only one possible location for peer influence to occur, but they are possibly an important location.  I

attempt to identify the effects of peers as they work through all channels.  Although one channel for peer

effects is students instructing one another, peer effects may also work through classroom disruption,

changes in classroom atmosphere, or resources that some students bring with them from home.  Peer effects

may even work through channels like the way in which teachers react to some students.  In the paper, I

make some effort to distinguish among the channels by which peer effects operate, but my primary purpose

is to establish the existence and direction of peer effects.  In particular, I attempt to judge the adequacy of

the baseline model of peer effects, which states that a student’s own achievement is affected linearly by the

mean achievement of his peers.

The primary contribution of the paper is two empirical strategies that, I would argue, generate

estimates of peer effects that are credibly free of selection bias.  Selection has traditionally plagued

estimates of peer effects, with parents’ behavior and schools’ behavior being potent sources of selection

bias in classroom-based estimates of peer effects.  Both empirical strategies depend on the idea that,

although parents may choose a school based on its population of peers and schools may assign a child to a

classrooms based on his achievement, there is some variation between cohorts’ peer composition within a

grade within a school that is idiosyncratic and beyond the easy management of parents and schools.  In the

first strategy, I attempt to identify idiosyncratic variation by comparing adjacent cohorts’ gender and racial

groups’ shares.  In the second strategy, I attempt to identify the idiosyncratic component of each group’s

achievement and determine whether the components are correlated.  For both strategies, I am sensitive to
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the potential criticism that what appears to be idiosyncratic variation in groups’ shares or achievement may

actually be a time trend within a grade within a school.  (This criticism does not affect estimates based on

gender groups under strategy 1.)   To address this criticism, I not only eliminate linear time trends:  I also

eliminate any school from the sample that appears to have a non-linear time pattern.  To do this, I

determine whether actual years explain more of a school’s variation than false, randomly assigned years. 

The peer effect estimates generated by the two strategies are reasonably similar.  One useful way to

state the estimates is in terms of test scores:  the effect on a student’s own test scores of being surrounded

by peers who score 1 point higher.  If one translates the peer effect estimates from strategy 1 into test

scores, then strategy 1 generates estimates in the range of 0.15 to 0.40.  Strategy 2 tends to generate

estimates in the range of 0.10 to 0.55.

In addition, by exploring patterns in the estimates generated by the two strategies, I find evidence

that the baseline model of peer effects is inadequate.  Although I find little evidence that peer achievement

has effects that are generally non-linear, I do find that peer achievement is not the sole channel for peer

effects.  The prevalence of females has a positive effect on male math scores that could not plausibly come

through females’ effect on mean peer achievement in math.  Also, the Hispanic share has a positive effect

on certain Hispanic students’ scores that could not be an effect of mean peer achievement since raising the

Hispanic share lowers mean peer achievement.  In addition, some results suggest that peer effects are

stronger inside racial groups than between racial groups.
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Table 1
Number and Size of Third Grades and Demographics of Third Graders in Texas 

Number of
Schools

with a 3rd
Grade

Size of the
Median 3rd

Grade
Cohort

Percent of Texas 3rd Graders who are:

Female Native
American

Asian Black Hispanic Anglo Eligible for
Free Lunch

Eligible for
Reduced

Price Lunch

1990-91 3265 79 48.7 0.2 2.2 14.8 30.7 52.2 41.6 (included in
free lunch)

1991-92 3161 79 48.6 0.2 2.1 14.9 30.5 52.2 42.3

1992-93 3201 77 48.7 0.4 2.2 14.9 30.5 52.0 36.8 5.8

1993-94 3256 85 48.7 0.3 2.1 14.1 34.9 48.6 43.8 6.3

1994-95 3285 84 48.7 0.3 2.2 14.1 35.8 47.6 45.1 6.5

1995-96 3329 78 48.6 0.3 2.4 15.2 33.6 48.5 44.3 7.1

1996-97 3408 76 48.7 0.3 2.5 15.4 33.2 48.5 43.3 7.7

1997-98 3439 77 48.8 0.3 2.6 15.7 33.7 47.7 43.4 7.9

1998-99 3512 77 48.9 0.3 2.5 15.7 34.9 46.4 42.8 8.1

Source:  Author’s calculations based on Texas Schools Microdata Panel.  See Appendix Table 1 for comparable results for fourth, fifth, and sixth grades.
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Table 2
Reading Scores of Third Graders

standard
deviation

(All)

mean test score of third graders who are:

All Female Male Native
American

Asian Black Hispanic Anglo Not
Disadvan-

taged

Eligible
Free

Lunch

Eligible
Reduced
Lunch

1990-91 2.3 28.5 29.2 27.9 28.7 30.3 26.6 26.7 30.2 30.1 26.4 (included
in free
lunch)1991-92 2.4 28.8 29.4 28.1 28.6 30.6 26.7 26.8 30.4 30.3 26.6

1992-93 2.6 28.0 28.7 27.4 27.8 29.8 25.9 25.9 29.7 29.5 25.5 27.7

1993-94 2.2 29.5 30.1 29.0 29.1 31.5 27.3 28.1 31.1 31.2 27.6 29.3

1994-95 2.4 29.8 30.4 29.3 29.9 32.2 27.5 28.4 31.4 31.5 27.8 29.7

1995-96 2.4 29.6 30.1 29.1 30.3 31.7 27.2 28.2 31.2 31.4 27.5 29.5

1996-97 2.5 29.5 30.1 28.9 29.0 32.0 27.3 28.0 31.1 31.4 27.3 29.4

1997-98 2.1 30.3 30.8 29.8 29.9 32.5 28.4 29.1 31.6 31.9 28.4 30.1

1998-99 2.1 31.3 31.8 30.9 31.0 33.1 29.0 30.4 32.7 32.7 29.6 31.3

Source:  Author’s calculations based on Texas Schools Microdata Panel.  See Appendix Table 2 for comparable results for fourth, fifth, and sixth grades.
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Table 3
Math Scores of Third Graders

standard
deviation

(All)

mean test score of third graders who are:

All Female Male Native
American

Asian Black Hispanic Anglo Not
Disadva
n-taged

Eligible
Free

Lunch

Eligible
Reduced
Lunch

1990-91 2.6 35.9 35.9 36.0 36.5 38.4 33.3 33.9 37.7 37.4 33.7 (included
in free
lunch)1991-92 2.3 36.4 36.4 36.4 35.9 38.8 34.2 34.7 37.9 37.6 34.6

1992-93 2.6 35.7 35.7 35.7  35.7 38.2 33.1 34.0 37.3 36.9 33.7 35.4

1993-94 3.0 33.1 33.2 33.0 32.3 36.5 29.6 31.5 35.1 35.0 30.8 32.7

1994-95 3.1 34.8 34.9 34.7 34.8 38.2 31.5 33.2 36.7 36.7 32.6 34.6

1995-96 3.1 35.4 35.5 35.3 35.9 38.8 32.1 33.9 37.2 37.4 33.0 35.3

1996-97 2.7 36.5 36.6 36.4 35.9 39.7 33.5 35.3 38.1 38.2 34.4 36.4

1997-98 2.5 36.1 36.1 36.1 35.8 39.2 33.3 34.9 37.7 37.8 34.1 35.9

1998-99 2.4 37.0 36.8 37.2 36.8 39.7 33.7 36.2 38.6 38.5 35.2 36.9

Source:  Author’s calculations based on Texas Schools Microdata Panel.  See Appendix Table 3 for comparable results for fourth, fifth, and sixth grades.
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Table 4
The Variation of Interest:  Cohort-to-Cohort Changes in the Gender, Race, and Disadvantaged Shares of Third Graders

difference between 1994-95 and 1993-94 used as an example

first difference between adjacent cohorts in:

statistic

percent
female

percent native
american
detrended

percent
Asian

detrended

percent
black

detrended 

percent
Hispanic
detrended

percent
Anglo

detrended

percent
nondisadvantaged

detrended

percent
free lunch
detrended

percent reduced
price lunch
detrended

standard deviation 11 2 2 6 8 9 11 11 5

1st percentile -30 -3 -6 -17 -23 -25 -33 -30 -14

5th percentile -16 -2 -3 -8 -11 -12 -16 -15 -8

10th percentile -11 -1 -2 -5 -8 -9 -11 -11 -6

90th percentile 11 1 2 5 8 9 11 11 5

95th percentile 15 2 3 8 11 12 15 15 8

99th percentile 28 3 7 16 22 26 31 32 15

Source:  Author’s calculations based on Texas Schools Microdata Panel.
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Table 5
The Effect of Having a More Female Peer Group 

Third through Sixth Grade Regressions using First-Difference Variables (first differences between adjacent cohorts in a school)

each Cell represents a separate regression
and shows coefficient on change in the share of the cohort that is female

dependent variable is change in mean reading score of students who are: dependent variable is change in mean math score of students who are:

female male female male

third grade 0.374**
(0.149)
[0.337]**

0.471**
(0.174)
[0.424]**

0.381*
(0.195)
[6.561]*

0.396*
(0.204)
[6.832]*

fourth grade 0.315*
(0.153)
[0.424]

0.189
(0.215)
[0.254]

0.509*
(0.266)
[2.545]

0.422
(0.258)
[2.110]

fifth grade 0.413*
(0.188)
[0.516]*

0.402*
(0.204)
[0.503]*

0.603*
(0.281)
[6.030]*

0.044
(0.294)
[0.404]

sixth grade 0.330*
(0.158)
[0.314]*

0.323*
(0.169)
[0.308]*

0.640*
(0.352)
[1.684]*

0.808*
(0.419)
[2.126]*

Notes:  Standard errors in parentheses.  The coefficient is significantly different from zero at the 0.01 level if there are two asterisks, at the 0.05 level if there is one asterisk.  In
square brackets:  translation of coefficients into the implied effect of the change in peers’ test scores that would occur purely through the change in the share of the cohort that is
female.  To make this translation, one uses the estimated difference between the genders’ true underlying test scores (that is, test scores before peer effects).  Method is
weighted least squares.  The weights account for heteroskedasticity: the dependent variable is a group average.  Number of observations is 22,496 in third grade regressions,
19,084 in fourth grade regressions, 14,974 in fifth grade regressions, and 9,743 in sixth grade regressions.  An observation is a gender group in a cohort in a school.  The
dependent variables for third graders have the following means (and standard deviations):  30.1 (2.4) for females in reading, 29.0 (2.8) for males in reading, 35.7 (2.9) for
females in math, 35.6 (3.1) for males in math.  See Appendix Tables 2 and 3 for descriptive statistics on the dependent variables for other grades.  Author’s calculations based
on Texas Schools Microdata Panel.
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Table 7a
The Effect of Having Peers from Various Racial Groups 

Third Grade Regressions using First-Difference Variables (first differences between adjacent cohorts in a school)

each Column represents a separate regression
and shows coefficients on changes in the share of the cohort who belong to various racial groups

dep. var. is change in mean reading score of 3rd graders who are: dep. var. is change in mean math score of 3rd graders who are:

independent variable black Hispanic Anglo black Hispanic Anglo

change in share of 3rd graders
who are Native Am

-1.699
(2.207)
[1.019]

0.030
(1.473)

[-0.018]

-2.791**
(0.600)
[1.674]**

2.355
(2.666)

[-1.266]

-3.109
(1.742)
[1.672]

-0.701
(0.747)
[0.377]

change in share of 3rd graders
who are Asian

-0.420
(1.099)

[-0.663]

-0.634
(0.975)

[-1.003]

-0.209
(0.474)

[-0.331]

0.417
(1.343)
[0.298]

0.553
(1.159)
[0.394]

0.377
(0.592)
[0.269]

change in share of 3rd graders
who are black

-2.501**
(0.412)
[0.676]**

-0.983*
(0.432)
[0.266]**

-0.620**
(0.243)
[0.168]**

-1.863**
(0.510)
[0.402]**

-0.861*
(0.423)
[0.185]**

-0.427**
(0.201)
[0.092]**

change in share of 3rd graders
who are Hispanic

-0.420
(0.434)
[0.143]

0.056
(0.282)

[-0.019]

-0.277
(0.180)
[0.078]

-0.155
(0.534)
[0.050]

-0.003
(0.340)
[0.001]

0.094
(0.225)

[-0.030]

p-value:  all races have equal
effect

0.0003 0.0705 0.0002 0.0585 0.1240 0.4137

Notes:  Standard errors in parentheses.  The coefficient is significantly different from zero at the 0.01 level if there are two asterisks, at the 0.05 level if there is one asterisk.  In
square brackets:  translation of coefficients into the implied effect of the change in peers’ test scores that would occur purely through the change in the share of the cohort that
belongs to the racial group.  To make this translation, one uses the estimated difference between the racial group’s and Anglo’s true underlying test scores (that is, test scores
before peer effects).  Method is instrumental variables with weights.  The weights account for heteroskedasticity: the dependent variable is a group average.  The instruments
are detrended changes in the share of third graders who belong to a racial group.  The number of observations varies with the racial group whose achievement is the dependent
variable:  15,178 for black, 20,368 for Hispanic, 20,127 for Anglo.  An observation is a racial group in a cohort in a school.  Author’s calculations based on Texas Schools
Microdata Panel.
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Table 7b
Coefficient on Change in the Share of Third Graders who belong to Various Racial Groups 

Third Grade Regressions using Reduced Sample of Schools that Do Not Show Evidence of Time Trends

each Column represents a separate regression
and shows coefficients on changes in the share of the cohort who belong to various racial groups

dep. var. is change in mean reading score of 3rd graders who are: dep. var. is change in mean math score of 3rd graders who are:

independent variable black Hispanic Anglo black Hispanic Anglo

change in share of 3rd graders
who are Native Am

-1.258
(4.061)
[0.755]

2.441
(2.701)

[-1.464]

-9.539**
(1.000)
[5.722]**

-0.570
(4.936)
[0.307]

-4.759
(3.150)
[2.559]

-5.986**
(1.225)
[3.219]**

change in share of 3rd graders
who are Asian

0.413
(1.714)
[0.653]

-1.467
(1.556)

[-2.319]

0.164
(0.711)
[0.259]

4.189*
(2.084)
[2.991]

0.708
(1.816)
[0.506]

0.527
(0.871)
[0.376]

change in share of 3rd graders
who are black

-2.814**
(0.648)
[0.761]**

-2.929**
(0.656)
[0.792]**

-0.678*
(0.322)
[0.184]*

-1.139*
(0.526)
[0.245]*

-1.517*
(0.766)
[0.327]*

-0.577*
(0.254)
[0.124]*

change in share of 3rd graders
who are Hispanic

-0.731
(0.681)
[0.249]

-1.058**
(0.450)
[0.361]**

-0.108
(0.291)
[0.037]

-0.903
(0.828)
[0.289]

-0.104
(0.526)
[0.033]

0.349
(0.357)

[-0.112]

p-value:  all races have equal
effect

0.0437 0.0206 0.0001 0.0242 0.1427 0.4137

Notes:  Standard errors in parentheses.  The coefficient is significantly different from zero at the 0.01 level if there are two asterisks, at the 0.05 level if there is one asterisk.  In
square brackets:  translation of coefficients into the implied effect of the change in peers’ test scores that would occur purely through the change in the share of the cohort that
belongs to the racial group.  To make this translation, one uses the estimated difference between the racial group’s and Anglo’s true underlying test scores (that is, test scores
before peer effects).  Method is weighted least squares, in which the weights account for heteroskedasticity: the dependent variable is a group average.  The number of
observations is reduced from the number in the previous table because the sample includes only schools that do not show evidence of time trends (the standard of evidence is
“drop if more than random”--see text).  The number of observations is:  5,608 for black achievement, 6,875 for Hispanic achievement, and 6,928 for Anglo achievement.  An
observation is a racial group in a cohort in a school.  Author’s calculations based on Texas Schools Microdata Panel.
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Table 8
Non-Linear Effects of Racial Composition?

Effect of a Change in the Share of the Cohort that is Black or Hispanic, for Various Ranges of Percent Black or Hispanic
each Column represents a separate regression

dep. var. is mean reading score of third graders who are: dep. var. is mean math score of third graders who are:

black Hispanic Anglo black Hispanic Anglo

effect of change in
share of 3rd
graders who are
black, where
cohort is:

0 to 33 percent black -0.827
(0.531)

-0.357
(0.470)

-0.189
(0.254)

-0.313
(0.634)

-1.107*
(0.550)

0.008
(0.311)

33 to 66 percent black -2.503**
(0.507)

-1.362
(1.184)

-0.933*
(0.461)

-2.412**
(0.605)

1.192
(0.792)

-1.146*
(0.562)

66 to 100 percent black 0.111
(0.615)

-1.062
(0.439)

-2.625*
(1.261)

1.347
(0.734)

-0.538
(1.384)

-1.090
(1.538)

effect of change in
share of 3rd
graders who are
Hispanic, where
cohort is:

0 to 33 percent Hispanic -0.222
(0.492)

-1.063**
(0.439)

-0.115
(0.210)

0.740
(0.587)

-1.346**
(0.514)

-0.081
(0.256)

33 to 66 percent Hispanic -0.351
(0.590)

0.143
(0.367)

-0.099
(0.289)

-0.683
(0.704)

0.226
(0.429)

0.240
(0.352)

66 to 100 percent Hispanic 1.600
(1.035)

0.678*
(0.330)

0.147
(0.582)

0.694
(1.235)

0.813*
(0.403)

0.096
(0.708)

See notes for previous table.  Specification is the same, except that the change in the share of students who are black (and Hispanic) is interacted with three indicator variables
for the share of the cohort that is black (and Hispanic).
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Table 9
Effect of Females’ Unexpected Performance on the Unexpected Performance of their Male Peers (and vice versa)

each Cell represents a separate regression

dependent variable:  residual from a school-grade-gender specific regression of test scores on a time trend and cohort gender and racial composition
explanatory variables:  year indicator variables, residual from a school-grade-gender specific regression of test scores on a time trend and cohort gender 

 and racial composition (residual is multiplied by group’s share of cohort)

dependent variable explanatory variable of interest coefficient for reading regression coefficient for math regression

male 3rd graders’ residuals female 3rd graders’ residuals 0.444**   (0.029) 0.622**   (0.021)

male 4th graders’ residuals female 4th graders’ residuals 0.414**   (0.031) 0.489**   (0.024)

male 5th graders’ residuals female 5th graders’ residuals 0.325**   (0.033) 0.423**   (0.032)

male 6th graders’ residuals female 6th graders’ residuals 0.330**   (0.036) 0.388**   (0.031)

male 5th graders’ residuals female 3rd graders’ residuals 0.081**   (0.018) 0.056**     (0.020)

female 3rd graders’ residuals male 3rd graders’ residuals 0.385**   (0.024) 0.609**   (0.019)

female 4th graders’ residuals male 4th graders’ residuals 0.352**   (0.025) 0.479**   (0.026)

female 5th graders’ residuals male 5th graders’ residuals 0.316**   (0.032) 0.398**   (0.031)

female 6th graders’ residuals male 6th graders’ residuals 0.285**   (0.031) 0.384**   (0.031)

female 5th graders’ residuals male 3rd graders’ residuals 0.079**   (0.017) 0.055**     (0.020)

Notes:  An observation is at the school-cohort-grade-gender group level.  Each cell represents a separate regression which includes year indicator variables as well as the
variable of interest shown.  Method is least squares with robust standard errors that allow for school clustering.  There are 28,733 observations for third grade cohorts, 18,536
observations for fourth grade cohorts,  14,899 observations for fifth grade cohorts, and 12,048 observations for sixth grade cohorts.
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Table 10
Are Ostensible Peer Effects Really Teacher Effects or Time Trends? 

Specification Tests for Effect of Females’ Unexpected Performance on the Unexpected Performance of their Male Peers

each Cell represents a separate regression

Specification is identical to that of previous table.  Only sample differs.

Sample is schools with low teacher turnover

dependent variable explanatory variable of interest coefficient for reading regression coefficient for math regression

male 3rd graders’ residuals female 3rd graders’ residuals 0.570**   (0.020) 0.745**   (0.014)

male 4th graders’ residuals female 4th graders’ residuals 0.556**   (0.020) 0.582**   (0.018)

male 5th graders’ residuals female 5th graders’ residuals 0.514**   (0.058) 0.552**   (0.049)

male 6th graders’ residuals female 6th graders’ residuals 0.535**   (0.023) 0.576**   (0.022)

Sample is schools with no apparent time trend

dependent variable explanatory variable of interest coefficient for reading regression coefficient for math regression

male 3rd graders’ residuals female 3rd graders’ residuals 0.592**   (0.072) 0.639**   (0.049)

male 4th graders’ residuals female 4th graders’ residuals 0.572**   (0.076) 0.501**   (0.066)

male 5th graders’ residuals female 5th graders’ residuals 0.564**   (0.203) 0.533**   (0.134)

male 6th graders’ residuals female 6th graders’ residuals 0.613**   (0.087) 0.554**   (0.067)

Notes:  See notes for previous table.   In schools with low teacher turnover, fewer than 10 percent of teaching slots turn over in each six-year period.  A school is classified as
having no apparent time trend if a regression that is quartic in time does not explain at least 1.05 times as much variation in student performance when actual years are used
than when a false year is randomly assigned.
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Table 11
Effect of Racial Groups’ Unexpected Reading Performance on the Unexpected Reading Performance of their Peers from Another Racial Group

each Row represents a separate regression based on Reading scores

dependent variable:  residual from a school-grade-race specific regression of test scores on a time trend and cohort gender and racial composition
explanatory variables:  year indicator variables; residuals from school-grade-race specific regressions of test scores on a time trend and cohort gender and racial composition

each residual is multiplied by its group’s share of the cohort, so that if all races had an equal effect, their coefficients would be identical

dependent variable explanatory variables
of interest

coefficient on the residual of students who are: p-value:  all
races have equal

effectNative Amer Asian black Hispanic Anglo

black 3rd graders’ residuals 3rd graders’ residuals -0.512   (2.127) 0.783** (0.322) 0.652** (0.058) 0.806** (0.069) 0.435

black 4th graders’ residuals 4th graders’ residuals 0.948    (1.920) 1.553** (0.362) 0.600** (0.063) 0.678** (0.097) 0.087

black 5th graders’ residuals 5th graders’ residuals -0.368   (0.816) 0.769     (0.571) 0.401** (0.095) 0.435** (0.103) 0.701

black 6th graders’ residuals 6th graders’ residuals 2.652    (6.772) 1.080     (0.713) 0.558** (0.118) 0.551** (0.155) 0.900

black 5th graders’ residuals 3rd graders’ residuals 0.013   (5.013) 0.098     (0.321) 0.075*   (0.034) 0.081*   (0.039) 0.956

Hispanic 3rd graders’ residuals 3rd graders’ residuals 1.270    (1.162) 1.375** (0.301) 0.827** (0.073) 0.651** (0.049) 0.031

Hispanic 4th graders’ residuals 4th graders’ residuals 1.278*  (0.617) 1.009** (0.316) 0.757** (0.079) 0.556** (0.062) 0.113

Hispanic 5th graders’ residuals 5th graders’ residuals 1.486    (0.926) 0.501     (0.444) 0.716** (0.102) 0.376** (0.087) 0.073

Hispanic 6th graders’ residuals 6th graders’ residuals -0.546   (0.369) 1.106     (0.805) 0.885** (0.175) 0.550** (0.087) 0.003

Hispanic 5th graders’ residuals 3rd graders’ residuals 0.022    (4.835) 0.508     (0.305) 0.087*   (0.041) 0.060*   (0.027) 0.862

Anglo 3rd graders’ residuals 3rd graders’ residuals 1.188   (1.860) 0.782** (0.220) 0.584** (0.061) 0.454** (0.040) 0.043

Anglo 4th graders’ residuals 4th graders’ residuals 0.298   (0.689) 0.869** (0.357) 0.441** (0.074) 0.413** (0.043) 0.640

Anglo 5th graders’ residuals 5th graders’ residuals 1.051   (0.861) 0.705** (0.273) 0.335** (0.097) 0.288** (0.053) 0.394

Anglo 6th graders’ residuals 6th graders’ residuals 1.025   (0.801) 1.300** (0.409) 0.637** (0.124) 0.400** (0.066) 0.062

Anglo 5th graders’ residuals 3rd graders’ residuals 0.045   (0.648) 0.074     (0.146) 0.059*   (0.033) 0.048*   (0.018) 0.920

Each row represents a separate regression which includes year indicator variables as well as the variables of interest shown.  Method is least squares with robust standard errors that allow for
school clustering.  28,733 observations for third grade cohorts, 18,536 observations for fourth grade cohorts,  14,899 observations for fifth grade cohorts, 12,048 observations for sixth grade
cohorts.  
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Table 12
Effect of Racial Groups’ Unexpected Math Performance on the Unexpected Math Performance of their Peers from Another Racial Group

each Row represents a separate regression based on Math scores

dependent variable:  residual from a school-grade-race specific regression of test scores on a time trend and cohort gender and racial composition
explanatory variables:  year indicator variables; residuals from school-grade-race specific regressions of test scores on a time trend and cohort gender and racial composition

each residual is multiplied by its group’s share of the cohort, so that if all races had an equal effect, their coefficients would be identical

dependent variable explanatory variables
of interest

coefficient on the residual of students who are: p-value:  all
races have equal

effectNative Amer Asian black Hispanic Anglo

black 3rd graders’ residuals 3rd graders’ residuals  0.480   (1.893) 1.864** (0.327) 0.825** (0.052) 1.055** (0.052) 0.001

black 4th graders’ residuals 4th graders’ residuals -0.026   (2.702) 1.660** (0.545) 0.633** (0.070) 0.784** (0.074) 0.064

black 5th graders’ residuals 5th graders’ residuals -0.450   (9.358) 1.725** (0.608) 0.448** (0.090) 0.672** (0.097) 0.093

black 6th graders’ residuals 6th graders’ residuals -0.875   (6.221) 1.086     (0.628) 0.710** (0.104) 0.721** (0.139) 0.937

black 5th graders’ residuals 3rd graders’ residuals 0.017   (6.147) 0.234     (0.355) 0.086*   (0.039 0.069*   (0.035) 0.807

Hispanic 3rd graders’ residuals 3rd graders’ residuals  1.075   (1.138) 1.426** (0.296) 0.856** (0.053) 0.898** (0.040) 0.206

Hispanic 4th graders’ residuals 4th graders’ residuals  1.109   (1.677) 1.261** (0.370) 0.767** (0.069) 0.748** (0.059) 0.394

Hispanic 5th graders’ residuals 5th graders’ residuals  1.835   (3.856) 1.750** (0.636) 0.701** (0.102) 0.610** (0.066) 0.243

Hispanic 6th graders’ residuals 6th graders’ residuals -0.087   (0.808) 1.264     (0.791) 0.740** (0.121) 0.567** (0.074) 0.384

Hispanic 5th graders’ residuals 3rd graders’ residuals 0.018    (5.651) 0.356     (0.320) 0.082*   (0.036) 0.055*   (0.027) 0.745

Anglo 3rd graders’ residuals 3rd graders’ residuals 1.077   (0.886) 1.252** (0.229) 0.747** (0.060) 0.632** (0.032) 0.137

Anglo 4th graders’ residuals 4th graders’ residuals 1.501   (0.803) 1.113** (0.267) 0.589** (0.071) 0.556** (0.047) 0.140

Anglo 5th graders’ residuals 5th graders’ residuals 0.461   (2.017) 1.256** (0.337) 0.464** (0.085) 0.435** (0.056) 0.131

Anglo 6th graders’ residuals 6th graders’ residuals 1.034   (0.802) 1.036     (0.646) 0.600** (0.205) 0.600** (0.078) 0.806

Anglo 5th graders’ residuals 3rd graders’ residuals 0.034   (1.144) 0.119     (0.267) 0.080*   (0.038) 0.044*   (0.021) 0.731

Notes:  Each row represents a separate regression which includes year indicator variables as well as the variables of interest shown.  Method is least squares with robust standard errors that allow
for school clustering.  28,733 observations for third grade cohorts, 18,536 observations for fourth grade cohorts,  14,899 observations for fifth grade cohorts, 12.048 observations for sixth grade
cohorts.





53

Table 14
Non-Linear Peer Effects? 

Quadratic Specifications for Effect of Groups’ Unexpected Performance on the Unexpected Performance of their Peers from Another Group

each Row represents a separate regression based on Reading scores

dependent variable explanatory variable of interest coefficient on linear term coefficient on quadratic term

male 3rd graders’ reading residuals female 3rd graders’ reading residuals 0.445**   (0.029) 0.004    (0.007)

male 4th graders’ reading residuals female 4th graders’ reading residuals 0.415**   (0.031) 0.004    (0.004)

male 5th graders’ reading residuals female 5th graders’ reading residuals 0.324**   (0.036) 0.008    (0.008)

male 6th graders’ reading residuals female 6th graders’ reading residuals 0.330**   (0.036) 0.004    (0.004)

each Row represents a separate regression based on Math scores

dependent variable explanatory variable of interest coefficient on linear term coefficient on quadratic term

male 3rd graders’ math residuals female 3rd graders’ math residuals 0.621**   (0.021) -0.002    (0.004)

male 4th graders’ math residuals female 4th graders’ math residuals 0.489**   (0.024) -0.002    (0.004)

male 5th graders’ math residuals female 5th graders’ math residuals 0.423**   (0.032) -0.004    (0.008)

male 6th graders’ math residuals female 6th graders’ math residuals 0.387**   (0.031) -0.003    (0.004)

Notes:  An observation is at the school-cohort-grade-gender group level.  Each row represents a separate regression which includes year indicator variables as well as the variable of interest shown. 
Method is least squares with robust standard errors that allow for school clustering.  There are 28,733 observations for third grade cohorts, 18,536 observations for fourth grade cohorts,  14,899
observations for fifth grade cohorts, and 12,048 observations for sixth grade cohorts.
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Appendix Table 1
Number and Size of Fourth, Fifth, and Sixth Grades 

and Demographics of Fourth, Fifth, and Sixth Graders in Texas, early and late 1990s 

Number of
Schools with
this Grade

Size of the
Median

Cohort in this
Grade

Percent of Texas Students in this Grade who are:

Female Native
American

Asian Black Hispanic Anglo  Free Lunch Reduced Price
Lunch

4th Grade
1992-93

3,172 86 48.6 0.3 2.1 14.0 35.0 48.7 42.5 5.9

4th Grade
1998-99

3,482 79 48.9 0.4 2.6 15.3 35.8 46.0 42.9 8.2

5th Grade
1993-94

3,064 83 48.6 0.2 2.2 13.9 35.2 48.5 42.2 6.1

5th Grade
1998-99

3,278 77 48.7 0.3 2.6 14.7 36.4 46.0 42.6 7.9

6th Grade
1993-94

2,103 84 48.6 0.2 2.2 14.1 35.0 48.5 39.7 5.9

6th Grade
1998-99

2,240 79 48.6 0.3 2.5 14.6 37.4 45.3 41.5 7.3

Source:  Author’s calculations based on Texas Education Agency data. 
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Appendix Table 2
Reading Scores of Fouth, Fifth, and Sixth Graders in Texas, early and late 1990s

standard
deviation

(All)

Mean Reading Score of Students in this Grade who are:

All Female Male Native
American

Asian Black Hispanic Anglo Not
Disadvnt

Free
Lunch

Reduced
Lunch

4th Grade 1992-93 3.5 27.6 28.2 27.1 27.3 30.4 24.1 24.9 30.4 30.2 24.3 27.0

4th Grade 1998-99 2.3 34.3 34.8 33.9 34.2 36.5 32.0 33.1 35.9 36.0 32.4 34.2

5th Grade 1993-94 2.5 30.2 30.7 29.8 30.1 32.9 27.5 28.5 32.2 32.1 27.8 29.8

5th Grade 1998-99 2.3 34.1 34.3 33.9 34.4 36.0 32.0 32.6 35.9 35.9 32.0 33.9

6th Grade 1993-94 2.9 28.9 29.4 28.5 29.0 32.1 25.9 26.6 31.3 31.1 25.9 28.5

6th Grade 1998-99 2.4 32.6 33.2 32.1 32.7 34.9 30.7 30.7 34.6 34.5 30.1 32.4

Appendix Table 3
Math Scores of Fouth, Fifth, and Sixth Graders in Texas, early and late 1990s

standard
deviation

(All)

Mean Math Score of Students in this Grade who are:

All Female Male Native
American

Asian Black Hispanic Anglo Not
Disadvnt

Free
Lunch

Reduced
Lunch

4th Grade 1992-93 4.1 35.8 36.1 35.6 35.8 40.8 31.2 33.3 38.7 38.5 32.4 35.2

4th Grade 1998-99 2.9 42.4 42.4 42.3 41.8 45.8 38.7 41.6 44.0 44.1 40.3 42.3

5th Grade 1993-94 3.6 38.1 38.3 37.9 37.7 43.5 33.5 36.0 40.6 40.5 35.0 37.5

5th Grade 1998-99 2.9 43.4 43.4 43.5 43.4 47.2 39.5 42.4 45.3 45.2 41.2 43.2

6th Grade 1993-94 4.2 40.4 41.1 39.7 39.4 46.6 35.1 37.5 43.6 43.2 36.4 39.7

6th Grade 1998-99 3.3 46.6 46.9 46.4 46.6 50.5 42.8 44.7 49.1 48.8 43.8 46.5

Source:  Author’s calculations based on Texas Education Agency data.
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Appendix Table 4
Scores of Third Graders in 1994-95

in schools that are: in schools that are:

less than 1
percent black

1 to 6 percent
black

6 to 20
percent black

more than 20
percent black

less than 10
percent

Hispanic

10 to 25 percent
Hispanic

25 to 60
percent

Hispanic

more than 60
percent Hispanic

Asian-Anglo reading differential 0.8 1.0 1.2 1.1 1.0 0.9 0.7 1.2

black-Anglo reading differential -2.6 -2.4 -3.1 -3.1 -2.9 -3.1 -3.2 -2.3

Hispanic-Anglo reading differential -2.0 -1.8 -1.8 -1.5 -1.3 -1.9 -2.1 -1.7

Asian-Anglo math differential 1.8 1.7 1.6 1.9 1.9 1.6 1.1 2.1

black-Anglo math differential -3.1 -3.8 -4.6 -4.2 -4.1 -4.4 -4.4 -3.9

Hispanic-Anglo math differential -2.4 -2.4 -2.4 -1.8 -1.8 -2.5 -2.7 -1.9

Source:  Author’s calculations based on Texas Schools Microdata Panel.
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Appendix Table 5a
The Effect of Having Peers from Various Racial Groups 

Fourth Grade Regressions using First-Difference Variables (first differences between adjacent cohorts in a school)

each Column represents a separate regression
and shows coefficients on changes in the share of the cohort who belong to various racial groups

dep. var. is change in mean reading score of 4th graders who are: dep. var. is change in mean math score of 4th graders who are:

independent variable black Hispanic Anglo black Hispanic Anglo

change in share of 4th graders who
are Native Am

-9.105**
(2.718)
[4.823]**

0.118
(2.455)

[-0.063]

-0.870
(1.351)
[0.461]

-12.468**
(3.448)
[5.256]**

2.432
(3.151)

[-1.025]

-1.562
(1.804)
[0.658]

change in share of 4th graders who
are Asian

1.285
(1.389)
[1.373]

0.421
(1.273)
[0.450]

-0.227
(0.627)

[-0.242]

3.432*
(1.762)
[1.403]*

-0.021
(1.634)

[-0.009]

0.436
(0.837)
[0.178]

change in share of 4th graders who
are black

0.293
(0.546)

[-0.064]

-1.201*
(0.560)
[0.262]*

0.224
(0.327)

[-0.048]

-0.400
(0.693)
[0.067]

-2.999**
(0.720)
[0.502]**

-1.037**
(0.436)
[0.174]**

change in share of 4th graders who
are Hispanic

0.380
(0.593)

[-0.112]

-0.817*
(0.377)
[0.241]*

-0.029
(0.247)
[0.009]

0.374
(0.752)

[-0.106]

-1.657**
(0.483)
[0.472]**

-0.668*
(0.329)
[0.190]*

p-value:  all races have equal effect 0.0045 0.9911 0.8146 0.0005 0.5874 0.9362

Notes:  Standard errors in parentheses.  The coefficient is significantly different from zero at the 0.01 level if there are two asterisks, at the 0.05 level if there is one asterisk.  In square brackets: 
translation of coefficients into the implied effect of the change in peers’ test scores that would occur purely through the change in the share of the cohort that belongs to the racial group.  To make
this translation, one uses the estimated difference between the racial group’s and Anglo’s true underlying test scores (that is, test scores before peer effects).  Method is instrumental variables with
weights.  The weights account for heteroskedasticity: the dependent variable is a group average.  The instruments are detrended changes in the share of fourth graders who belong to a racial group. 
The number of observations varies with the racial group whose achievement is the dependent variable:  12,962 for black achievement, 17,435 for Hispanic achievement, 17,049 for Anglo
achievement.  An observation is a racial group in a cohort in a school.  Author’s calculations based on Texas Schools Microdata Panel.
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Appendix Table 6a
The Effect of Having Peers from Various Racial Groups 

Fifth Grade Regressions using First-Difference Variables (first differences between adjacent cohorts in a school)

each Column represents a separate regression
and shows coefficients on changes in the share of the cohort who belong to various racial groups

dep. var. is change in mean reading score of 5th graders who are: dep. var. is change in mean math score of 5th graders who are:

independent variable black Hispanic Anglo black Hispanic Anglo

change in share of 5th graders who
are Native Am

-2.294
(3.642)
[1.513]

2.518
(2.591)

[-1.660]

0.529
(0.775)

[-0.349]

0.298
(5.300)

[-0.137]

0.952
(3.700)

[-0.439]

1.540
(1.188)

[-0.710]

change in share of 5th graders who
are Asian

1.465
(1.362)
[2.032]

1.688
(1.209)
[2.343]

0.301
(0.601)
[0.418]

1.046
(1.981)
[0.431]

1.852
(1.726)
[0.764]

0.718*
(0.364)
[0.296]*

change in share of 5th graders who
are black

-1.279**
(0.546)
[0.323]**

-0.604*
(0.310)
[0.152]*

-0.582
(0.320)
[0.147]

-2.753**
(0.794)
[0.443]**

-0.995*
(0.473)
[0.160]*

-0.279
(0.492)
[0.045]

change in share of 5th graders who
are Hispanic

0.402
(0.603)

[-0.124]

-1.420**
(0.375)
[0.439]**

-0.334
(0.241)
[0.103]

-0.252
(0.877)
[0.072]

-2.047**
(0.536)
[0.587]**

-0.612*
(0.310)
[0.176]*

p-value:  all races have equal effect 0.0271 0.0480 0.0745 0.3591 0.0320 0.3095

Notes:  Standard errors in parentheses.  The coefficient is significantly different from zero at the 0.01 level if there are two asterisks, at the 0.05 level if there is one asterisk.  In square brackets: 
translation of coefficients into the implied effect of the change in peers’ test scores that would occur purely through the change in the share of the cohort that belongs to the racial group.  To make
this translation, one uses the estimated difference between the racial group’s and Anglo’s true underlying test scores (that is, test scores before peer effects).  Method is instrumental variables with
weights.  The weights account for heteroskedasticity: the dependent variable is a group average.  The instruments are detrended changes in the share of fifth graders who belong to a racial group. 
The number of observations varies with the racial group whose achievement is the dependent variable:  10,119 for black achievement, 13,749 for Hispanic achievement, 13,328 for Anglo
achievement.  An observation is a racial group in a cohort in a school.  Author’s calculations based on Texas Schools Microdata Panel.
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Appendix Table 6b
Coefficient on Change in the Share of Fifth Graders who belong to Various Racial Groups 

Fifth Grade Regressions using Reduced Sample of Schools that Do Not Show Evidence of Time Trends

each Column represents a separate regression
and shows coefficients on changes in the share of the cohort who belong to various racial groups

dep. var. is change in mean reading score of 5th graders who are: dep. var. is change in mean math score of 5th graders who are:

independent variable black Hispanic Anglo black Hispanic Anglo

change in share of 5th graders who
are Native Am

-1.326
(4.289)
[0.874]

4.730
(3.052)

[-3.120]

0.653
(0.860)

[-0.430]

-0.583
(6.221)
[0.269]

-0.361
(4.402)
[0.167]

1.587
(1.327)

[-0.733]

change in share of 5th graders who
are Asian

1.892
(1.683)
[2.625]

1.389
(1.509)
[1.927]

0.423
(0.746)
[0.587]

3.345
(2.441)
[1.380]

0.981
(2.176)
[0.405]

0.761*
(1.151)
[0.314]*

change in share of 5th graders who
are black

-1.270*
(0.650)
[0.318]*

-1.814**
(0.670)
[0.458]**

-0.009
(0.379)
[0.002]

-1.823*
(0.904)
[0.293]*

-2.357**
(0.966)
[0.379]**

-0.704
(0.585)
[0.113]

change in share of 5th graders who
are Hispanic

1.184
(0.722)

[-0.366]

-2.023**
(0.465)
[0.626]**

-0.486
(0.304)
[0.151]

-1.850
(1.047)
[0.530]

-2.889**
(0.671)
[0.829]**

-1.314**
(0.469)
[0.377]**

p-value:  all races have equal effect 0.0026 0.1848 0.4549 0.0084 0.1082 0.1419

Notes:  Standard errors in parentheses.  The coefficient is significantly different from zero at the 0.01 level if there are two asterisks, at the 0.05 level if there is one asterisk.  In square brackets: 
translation of coefficients into the implied effect of the change in peers’ test scores that would occur purely through the change in the share of the cohort that belongs to the racial group.  To make
this translation, one uses the estimated difference between the racial group’s and Anglo’s true underlying test scores (that is, test scores before peer effects).  Method is weighted least squares, in
which the weights account for heteroskedasticity: the dependent variable is a group average.  The number of observations is reduced from the number in the previous table because the sample
includes only schools that do not show evidence of time trends (the standard of evidence is “drop if more than random”--see text).  The number of observations is:  6,087 for black achievement,
7,714 for Hispanic achievement, and 7,522 for Anglo achievement.  An observation is a racial group in a cohort in a school.  Author’s calculations based on Texas Schools Microdata Panel.
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Appendix Table 7a
The Effect of Having Peers from Various Racial Groups 

Sixth Grade Regressions using First-Difference Variables (first differences between adjacent cohorts in a school)

each Column represents a separate regression
and shows coefficients on changes in the share of the cohort who belong to various racial groups

dep. var. is change in mean reading score of 6th graders who are: dep. var. is change in mean math score of 6th graders who are:

independent variable black Hispanic Anglo black Hispanic Anglo

change in share of 6th graders who
are Native Am

-0.978
(2.757)
[0.514]

4.582
(3.314)

[-2.406]

4.066
(2.904)

[-2.135]

-8.068*
(4.176)
[2.902]*

-2.285
(4.933)
[0.822]

3.620
(2.742)

[-1.303]

change in share of 6th graders who
are Asian

0.559
(1.876)

[-1.684]

1.220
(1.784)
[3.668]

1.160
(0.912)
[3.492]

0.245
(2.840)
[0.113]

0.358
(2.655)
[0.164]

2.022*
(1.033)
[0.926]*

change in share of 6th graders who
are black

-1.978**
(0.719)
[0.422]**

-0.628
(0.768)
[0.134]

-0.645*
(0.321)
[0.138]*

-2.000*
(1.005)
[0.273]*

-0.662
(1.142)
[0.085]

-0.940*
(0.441)
[0.128]*

change in share of 6th graders who
are Hispanic

-0.107
(0.767)
[0.023]

-0.936*
(0.482)
[0.209]*

-0.024
(0.330)
[0.006]

-0.224
(1.163)
[0.042]

-1.915**
(0.754)
[0.357]**

-0.457*
(0.520)
[0.085]*

p-value:  all races have equal effect 0.0865 0.0643 0.0454 0.0938 0.4014 0.3015

Notes:  Standard errors in parentheses.  The coefficient is significantly different from zero at the 0.01 level if there are two asterisks, at the 0.05 level if there is one asterisk.  In square brackets: 
translation of coefficients into the implied effect of the change in peers’ test scores that would occur purely through the change in the share of the cohort that belongs to the racial group.  To make
this translation, one uses the estimated difference between the racial group’s and Anglo’s true underlying test scores (that is, test scores before peer effects).  Method is instrumental variables with
weights.  The weights account for heteroskedasticity: the dependent variable is a group average.  The instruments are detrended changes in the share of sixth graders who belong to a racial group. 
The number of observations varies with the racial group whose achievement is the dependent variable:  6,558 for black achievement, 8,739 for Hispanic achievement, 8,920 for Anglo achievement. 
An observation is a racial group in a cohort in a school.  Author’s calculations based on Texas Schools Microdata Panel.
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Appendix Table 7b
Coefficient on Change in the Share of Sixth Graders who belong to Various Racial Groups 

Sixth Grade Regressions using Reduced Sample of Schools that Do Not Show Evidence of Time Trends

each Column represents a separate regression
and shows coefficients on changes in the share of the cohort who belong to various racial groups

dep. var. is change in mean reading score of 6th graders who are: dep. var. is change in mean math score of 6th graders who are:

independent variable black Hispanic Anglo black Hispanic Anglo

change in share of 6th graders who
are Native Am

-3.884
(2.991)
[2.040]

1.708
(4.450)

[-0.897]

-3.303
(2.303)

[-1.734]

-12.539**
(4.567)
[4.511]**

-1.792
(6.543)
[0.645]

-5.439
(3.604)
[1.956]

change in share of 6th graders who
are Asian

-1.973
(2.338)
[5.935]

0.097
(2.311)
[0.292]

1.085
(1.175)
[3.262]

-3.794
(3.566)

[-1.737]

2.915
(3.398)
[1.335]

1.426
(1.838)
[0.652]

change in share of 6th graders who
are black

-2.922**
(0.867)
[0.623]**

-0.413
(0.917)
[0.088]

-1.241**
(0.522)
[0.265]**

-2.092*
(1.050)
[0.286]*

-0.582
(1.348)
[0.079]

-2.013**
(0.816)
[0.275]**

change in share of 6th graders who
are Hispanic

-0.867
(0.939)
[0.194]

-1.442*
(0.633)
[0.322]*

-0.283
(0.426)
[0.063]

-0.010
(1.436)
[0.002]

-2.525**
(0.928)
[0.470]**

-0.195
(0.667)
[0.036]

p-value:  all races have equal effect 0.0589 0.1508 0.0561 0.0181 0.1509 0.1400

Notes:  Standard errors in parentheses.  The coefficient is significantly different from zero at the 0.01 level if there are two asterisks, at the 0.05 level if there is one asterisk.  In square brackets: 
translation of coefficients into the implied effect of the change in peers’ test scores that would occur purely through the change in the share of the cohort that belongs to the racial group.  To make
this translation, one uses the estimated difference between the racial group’s and Anglo’s true underlying test scores (that is, test scores before peer effects).  Method is weighted least squares, in
which the weights account for heteroskedasticity: the dependent variable is a group average.  The number of observations is reduced from the number in the previous table because the sample
includes only schools that do not show evidence of time trends (the standard of evidence is “drop if more than random”--see text).  The number of observations is:  4,005 for black achievement,
5,219 for Hispanic achievement, and 5,209 for Anglo achievement.  An observation is a racial group in a cohort in a school.  Author’s calculations based on Texas Schools Microdata Panel.


